Meta-programming with Names and Necessity

Aleksandar Nanevski
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

aleks@cmu.edu

Abstract 1 Introduction

Meta-programming languages provide infrastructure to gener- Meta-programming is a paradigm referring to the ability to al-
ate and execute object programs at run-time. In a typed setting, gorithmically compose programs of a certain object language,
they contain a modal type constructor which classifies object through a program written in a meta-language. A particularly
code. These code types generally come in two flavors: closed intriguing instance of this concept, and the one we are inter-
and open. Closed code expressions can be invoked at run-time ested in in this work, is when the meta and the object language
but the computations over them are more rigid, and typically are: (1) thesame or the object language is a subset of the
produce less efficient residual object programs. Open code meta language; and (2ypedfunctional languages. A lan-
provides better inlining and partial evaluation of object pro- guage satisfying (1) makes it possible to also invoke the gen-
grams, but once constructed, expressions of this type cannoterated programs at run-time. This setup is usually refered to
in general be evaluated. ashomogeneouseta-programming [20].

Recent work in this area has focused on combining the two no- Among the advantages of meta-programming and of its homo-
tions into a sound system. We present a novel way to achieve geneous and typed variant we distinguish the following (and
this. It is based on adding the notionrdmesrom the work see [20] for a comprehensive analysis).

on Nominal Logic and FreshML to the~-calculus of proof
terms for thenecessityfragment of modal logic S4. The re-
sulting language provides a more fine-grained control over
free variables of object programs when compared to the ex-
isting languages for meta-programming. In addition, this ap-
proach lends itself well to addition of intensional code analy-
sis, i.e. ability of meta programs to inspect and destruct object
programs at run-time in a type-safe manner, which we also
undertake.

Efficiency Rather than using one general procedure to solve
many different instances of a problem, a program can gen-
erate specialized (and hence more efficient) subroutines for
each particular case. If the language is capable of executing
thus generated procedures, the program can choose dynami-
cally, depending on a run-time value of a certain variable or
expression, which one is most suitable to invoke. A particular
instance of this idea is the functional programming concept of
Categories and Subject Descriptors staged computatigrand has been considered before in a typed
setting [23, 24, 3].
D.3.1 [Software]: Programming Languages Formal Defi-

nitions and Theor - S .
y Maintainability Instead of maintaining a number of special-

ized, but related, subprograms, it is easier to maintain their
General Terms generator. In a language capable of invoking the generated
Languages code, there is the added bonus of being able to accentuate the
relationship between the synthesized code and its producer;
the subroutines can be generated and bound to their respective

Keywords identifiers in the initialization stage of the program execution.

modal lambda-calculus, higher-order abstract syntax

Languages in which programs can not only be composed and
executed but also have their structure inspected add further ad-
vantages. Efficiency benefits from various optimizations that

can be performed knowing the structure of the code. For exam-

Permission to make digital or hard copies of all or part of this work for ple, erewank reports. in [8] on a way to reuse common subex
personal or classroom use is granted without fee provided that copies Pressions of a numerical function in order to compute its value
are not made or distributed for profit or commercial advantage and at a certain point and the value of itsdimensional gradient,

that copies bear this notice and the full citation on the first page. To put in such a way that the complexity of both evaluations per-

copy otherwise, to republish, to post on servers or to redistribute to ; . i
lists, requires prior specific permission and/or a fee. formed together does not grow with Maintainability (and

ICFP'02, October 4-6, 2002, Pittsburgh, Pennsylvania, USA. in general the whole program development process) benefits
Copyright 2002 ACM 1-58113-487-8/02/0010 ...$5.00 from the presence of types on both the level of synthesized

code, and on the level of program generators. Finally, there 2 Background
are applications from various domains, which seem to call for
the ability to execute a certain function as well as recurse over |n this section we review the basic development A5f-
its structure: see [19] for examples in computer graphics and calculus. We describe only the core language, but in the pre-
numerical analysis, and [18] for an example in machine learn- sented examples we assume the presence of certain types and
ing and probabilistic modeling. term constructs, like integers, conditionals or recursion. We

] ~refer the reader to the accompanying technical report [12] for
Recent developments in type systems for meta-programming a more detailed treatment of this and other related work. The
have been centered around two particular madahlculi: example we use throughout for illustration is the exponentia-
A2 andAO. The first is a language of proof terms for the tion function, presented below in a MinML-like notation.
modal logic S4, whose necessity construcfcannotatesalid
propositions [3, 15]. The second is the proof language for dis- pow = fix pow:int->int->int.
crete linear temporal logic, whose modal opergfgranno- An:int. Ax:int.
tates the time-level separation between propositions [2]. Both if n = 0 then 1 else x * pow (n-1) x
calculi provide a distinction between levels of terms, and this
explains their use in meta-programming. The lowest, level 0, The functional programming motivation behind the’ cal-
is the meta language, which is used to manipulate the terms onculus is to ensure proper staging of programs. For example,
level 1 (terms of typeJA in A0 and OAin AO). This first qon5|der the following equivalent of the exponentiation func-
level is the meta language for the level 2 containing another O
stratum of boxed and circled types, etc. Functional program-

L . . "= fi :int->int->int.
ming interpretation of these two constructors assigns fype pow lX}\p?W SHEToantTean
to closed codé.e. to closed terms of typa, while OA is the neint.
e ' if n = 0 then Ax:int.1

type ofpostponedtode, i.e. it classifies terms of typewhich olse

are associated with the subsequent time moment. Postponed let val u = pow (n - 1)
code inAO may refer to outside context variables, as long as in

they are on the same temporal level, and this has contributed Ax:int.
to it frequently being associated with the notioroplencode.
For this exact reason, the concept of codainis obviously

broader, allowing for more expressiveness and generation of One can argue thatow’ is preferable topow because it al-
better and more optimized residual programs (as already ob- |ows a partial evaluation of the function when onlis known,
served in [2]), but, unlika", it has no language support for but notx. Indeed, in such a situation, the expression’ n
mixing of the code levels, and in particular, no language sup- produces a residual function specialized to computingitie
port for execution of the generated code. power of its argument. In particular, this function will not
perform any operations or make decisions at run-time based
There have been several proposed systems which incorpo-on the value ofy; in fact, it does not even depend og-all the
rate the advantages from both languages, most notable beingcomputation steps dependentmhave been taken during the
MetaML [11, 22, 1]. MetaML starts with the postponed/open partial evaluation.
code type oAC and strengthens the notion to introduce closed
code as its refinement — as postponed code which happens taThe type system of" allows the programmer to specify the
contain no variables declared outside of it. The approach of intended staging of operations, so that computations from the
our paper is the opposite. Rather than refining the notion of subsequent stages are independent of the computations from
open code, we relax the notion of closed code. We start with the current stage. This is achieved by explicitly annotating
the system o=, but provide the additional expressiveness by the stages of the computation and requiring that each stage is
allowing the code to contain specified object variables as free a closedterm, i.e. that it is free of variables declared in the
(and rudiments of this idea have already been considered in surrounding code. Then the type system can check whether
[13]). The fact that a given code expression depends on a setthe written code conforms to the staging specification, making
of free variables will be reflected in its type. The object vari- staging errors into type errors.
ables themselves are represented by a separate semantic cate-
gory of names (also called symbols or atoms), which admits
equality. The treatment of names is adopted, with significant

X * u(x)
end

modifications, from the work on Nominal Logic and FreshML $gfn?1§ '2; T i } Qb&ﬁze‘ IDe?ez | boxe|
by Pitts and Gabbay [7, 17, 16, 6]. This design choice lends T let boxd; e1in &
itself well to the addition, in anrthogonal wayof intensional . .
code analysis, which we also undertake for the simply-typed Contexts Al == -|I,xA
’ Values v = x|AxA. e|boxe

segment of the language. Thus, we can also treat our simply-
typed code expressions as data; they can not only be evaluated,
but can also be compared for structural equality and destruc-
ted via pattern-matching, much in the same way as one would
work with any abstract syntax tree.

To declare that a subtermof type A is closed A" provides

the type constructar] and its introduction ternbox, so that

box e has typelJA (consult the typing rules below). It is in

this sense that the type construdiors associated with closed
code. In the spirit of this “run-time code generation” interpre-
tation, the operational semantics does not proscribe reductions
under the box; boxed expressions are values. For the purposes

of this paper, we will consider boxed code expressions to be - sq = (let box u =
uncompiled, i.e. stored and carried around in the form of their val sq = [fn]

abstract syntax trees

The elimination form forJ is let box u = e; in e,. Opera-
tionally, it evaluate®; to a boxed value, then binds the unre-
duced expression under that boxuadn . Notice thatu is

sgbox in u);
: int -> int

- sq 3;

val it = 9 : int

ThisAH staging ofbowbox leaves a lot to be desired. In partic-
ular, the residual programs thadwbox produces, e.gsqgbox,

not an ordinary variable — it stands for an unevaluated closed contain variable-for-variable redices, and hence are not as ef-
syntactic expression, rather than a value. This fact motivates ficient as one would want. Ideally, we would like to com-

having two variable contexts in the typing judgmentor or-
dinary value variables, anfl for closed syntactic expression

pletely inline all the function calls fromsgbox and obtain
sgbox = box (Ax:int. x*x*1). The reason the unwanted

variables. In order to have proper staging, code expressionsredices occur is, of course, because boxed code expressions

should not depend on value variables fropbut they can de-
pend on expression variables fram The typing and evalua-
tion rules ofAll are presented below.

XAeTl
AT EXA

UAeA
ATHU:A

AT xAre:B

ATHFAXA e:A—B
ATHFe:A—B ATFe:A
Altee:B

A-Fe: A
A;T +boxe: DA

AT e :OA AuATFe:B

AT Hletboxu=¢e ine:B

c—¢C AXA. e— AxA. e
e — AXA. e &\ [Vo/X|e— Vv
€16 —V
e; — boxe [e/u]ey — v

box e — box e letboxu=e;ine —v

The staging opow’ can be made explicit in the following way.

powbox =
fix pow:int -> O (int->int).
An:int.
if n = 0 then box (Ax:int. 1)
else

let box u = pow (n - 1)
in

box (Ax:int. x * u(x))
end

Application ofpowbox at argument 2 produces a boxed func-
tion for squaring.

- sgbox = powbox 2;
val sgbox =
box (Ax:int. x *
(Ay:int. y *
(Az:int. 1) y) x):0(int->int)

It can then be evaluated in order to be applied itself.

are values; they completely suspend the evaluation of the en-
closed term. As witnessed by the examplesg@box, it ma

be advantageous to have a general programming mechanism
whereby one could specify that certain reductions in a code
expression are to take place. Of course, already contains
mechanisms to encode substitutions of closed code, but there
is no way to perform substitutions of open code which is re-
quired in thesgbox example. The solution should be to extend
the notion of code to include not only closed expressions, but
also expressions which may contain free variables.

3 Core language

In this section we present the syntax and static semantics of
our core language. It extends tN€ calculus with constructs

for a unified treatment of the notions of closed and open code
— a problem which initiated the extension)d® into MetaML

[11, 22]. The motivational distinction between these two sys-
tems and our calculus is that we want to provide intensional
code analysis as part of the language, whilé and MetaML

do not do that. To be clear, we believe that extendi%or
MetaML with code analysis is possible. It will most likely
require similar machinery as developed here, except that the
considerations would probably be more complicated because
these calculi are more involved thaR'. At any rate, the ex-
tension ofAH with the machinery required by code analysis
already attains enough expressiveness to encode quite a few,
if not all, interesting programs froki© and MetaML. Under-
standing the exact relationship between all these languages,
however, remains future work.

Our approach starts with the closed code\bf, and allows

a code expression to contain only those free variables that
have been listed as dependencies in its type. Only the ex-
pressions with no dependencies will be executable. To be-
gin with, we handle free variables of a code expression not
as meta-level bound variables (as it happens to be the case in
AO and MetaML), but by a separate binding and abstraction
mechanism. The main reason is the following: intensional
code analysis ought to provide a test whether two free vari-
ables in a code expression are different or equal. The result
of this test is obviously not preserved under substitution, so
it looks questionable to tie the free code variables to outside
lambda abstractions. Having them both tied to the same mech-
anism of variable binding will almost certainly cause prob-
lems in the long run (as witnessed by, e.g., interaction of code
analysis with cross-stage persistence in MetaML, explained in

1Thus we are interested in something more than just devis-
ing an operational semantics which scans boxed expressions
and actually reduces all variable-for-variable redices.

[21]). The introduction of a separate binding mechanism for As only expressions with empty support can actually be eval-
free variables of syntactic code expressions has been proposediated, we needs a construct that would eliminate a name
before in [20], and even earlier in [10]. from the expression’s support, eventually turning unexecutable
expressions into executable ones. The construct for that is
Furthermore, we do not want the variable introduction form {X =e;} e, and it stands foexplicit substitutiorof the value
of this second mechanism to be a type introduction form as of e; for the occurrences of the nan¥eon thecurrent code
well. The reason for this is that we want to support recur- level ofe,. Notice the emphasis on the current code level; the
sion over syntax trees of code expressions. A function which explicit name substitution oX only removes the occurrences
scans syntactic code expressions and recurses under a lambdaf X which actually contribute to the support ef. It does
binder, has to provide some symbol to stand for the bound not (and it would not be sound if it did) remove those occur-
variable, before it can go on and recurse over the body of rences ofX which lie under one or morbox constructors.
the abstraction. Introduction of that temporary symbol should This way, name substitution providegtensionsi.e. defini-
not change the type of the recursing function. Thus, we need tions for names, while still allowing names under boxes to be
to resort tonames(see for example [14]). Additionally, we used for théntensionalinformation of their identity.
opt to separate the operation of name creation (renameability),
from the name abstraction (hiding of a name), because that Another construct that we need in the languagedme ab-
provides strictly more expressiveness in manipulation of code straction Quite often we need to express that a term depends
and names, than if the two are combined into a single con- on somename, but it is not really important how that name
structor. This is where we employ the mechanisms of Nom- is called (or the name is not accessible in the local context).
inal Logic and FreshML, which were designed with exactly For example, such a need arises when recursing over a syn-
that purpose in mind (see [16] and [17]). We introduce a new tax tree for a\-expression. Before descending underxha
semantic category afamegalso called symbols, atoms orin- temporary name has to be introduced on the fly to stand for
determinates) which are to stand for free variables in boxed the bound variable, but the identity of that name is not really
expressions. Thus, boxed expressions, as befdﬂé‘jm:annot important. We adopt the treatment of name abstraction from
contain free variables, but we allow them to contain names, Nominal Logic and FreshML. For example, X is a name
under the provision that the occurring free names are listed in of type P, the construct for abstracting the naevould be
the type of the expression. Correspondingly, the boxed types X. (=), and it has a corresponding type construc)l(t%r(—),

are now of the fornJ(A[C]) whereC is a finite set of namés \nich binds the occurrences of the nadidn the supplied
that the boxed term may depend on. type. The intended operational semanticXog is to pair up

)) the nameX and thevalue of e into aclosure thus explicitly
Informally, a termdepend®n a certain name if that name must piging the identity ofX (or, which is equivalent, returning the
be provided with a definition before the term can be evaluated. a-equivalence class @ with respect toX). The quantifiei

The set of names that a term depends on is calleddpport a5 glready been investigated in [6] and [16], but it has not
of the term. The notion of evaluation that we have in mind peen ysed explicitly in the definition of FreshML.
in these definitions is the one fro calculus. In particu-

lar, since the boxed expressionsNi are values, the boxed Just as in FreshML, the elimination form for name abstraction

expressions must have empty support. is name concretion Its syntax ise@Y, wheree is a name
abstraction and' is a hame not occurring ia Its operational

For example, assuming for a moment taandY are names meaning is to swal¥ with the name abstracted &

of type int, and that the usual operations of addition, multi-

plication and exponentiation of integers are primitive in our For example, assuming as before thaly:int are available

language, the term names, we can create the term

ty = X34+3X?Y +3XY? +Y3 tg = X. box (X2 —1)

which depends oonename (e.g. a “polynomial” in one in-

determinate), ignoring the exact identity of that name. The

type ofty is Z|/_| ID(int[Z]), reflecting the fact that the actual
-n

would have typent and support sefX,Y}. Indeed, in order
to evaluatd; to an integer, we first need to substitute integer
values forX andY, and thug; depends on botX andY. On

the other hand, if we box the tertm we obtain indeterminate is not really known. But, if a need arises to ma-
3 2 5 U3 nipulate the unknown indeterminate, we can always provide a
to = box (X° +3XY +3XY*+Y?) fresh name for it by concretion, like in the term
which has typ&l(int[X,Y]), but its support is the empty set, as ts =t2 @Y

ty is already a value. Notice how support of a term (in this case
t1) becomes part of the type, once the term itself is boxed. This
way, the types maintain the information about the support of
subterms of all code levels — no matter under how nizows

a subterm may appear. For example, the term

which reduces tbox (Y2 —1).

We also need a way to dynamically introduce fresh names into
the computation. Just like in FreshML, this duty is given to the
term constructor

2 2 .
t3 = (X4, box Y*) newX:Pin e

has the typént x CI(int[Y]) with support{X}. which creates a new local narKeand proceeds to evaluaén

the extended environment. Just like in FreshML, the type sys-
2Actually, C will have a bit more complex structure, to be tem will make sure that the value etloes not contain unsub-

introduced shortly stituted or unabstracted occurrenceXofJnlike in FreshML,

where types of names belong to a separate universe, our namestructor%lPA is also a binder, abstracting a naki# from the

can have arbitrary typR, as long a® is simple (i.e.[J-free).
Notice that this constraint on simple types is fairly arbitrary;

we wanted to understand the restricted language first before

we extend it and generalize it.

As O-types can now explicitly store the information about the

support of the terms they classify, another feature we need to

consider is explicit support polymorphism. A program may

want to manipulate code expressions no matter what their sup-
port sets are, or code expressions whose supports are unknow

at compile time. A typical example would be a function which

scans over some boxed term. When it encounters a Iambdat
expression, it has to place a fresh name instead of the bound

variable, and recursively continue scanning the body of the
lambda, which is itself a boxed expression, but depending on

this newly introduced name. For such uses, we extend the no-

tion of support of a term to not only list the names appearing
in the term, but to also allow variables standing for unknown
support sets. Our language provides a term consftpgK. e

of typeVp#K. A which is a polymorphic abstraction of an un-
known support sep disjoint from a set of nameK. Both
the constructs bind the variabpe and two terms/types differ-
ing only by a-variation of the bound variable are considered
equal. WherK is empty, we abbreviate the constructs into
Ap. eandVp. A. The terme [[C] is the polymorphic instantia-
tion, substituting a support sétfor the support variable bound
ine.

The syntax of our language is presented in Figure 1. Simi-

larly to A5, we make a distinction between ordinary (value)
variables and expression variables. We further distinguish be-

tween expression variables and expressions that have empty
support, and those that may depend on some name; the first
kind can be compiled and executed, and the second cannot.

In analogy with Kripke semantics for Modal Logic, we will
call the first kindreflexive and the second kindonreflexive
Thus, a variable conteXt may contain three forms of vari-
able typingsx:A for value variablesy::A[C] for reflexive and
t::A[C] for nonreflexive expression variables with supp®rt
Notice that in a seeming contradiction to the definition of re-
flexive expression variables, we allow the supf®itb occur

in their typing. The reason for itis in the interaction of expres-
sion variables with the term constructoox for expressions.
Expression variables which are non-reflexive (and hence un-
reachable) outside a boxed term, will be accessible in the in-
side of it. It is in this sense that non-reflexive expressions can-
not be executed, but only substituted into other non-reflexive
expressions. This intuition will be formalized later in the typ-
ing judgment where the rule for box introduction will change
the status of non-reflexive variables into reflexive ones. We
call the typeA with a supportC anannotated type

The support variable contet associates support variables
with disjointness annotationsFor examplep#K € A would
mean that the support set varialgestands for an unknown
support se€ such that: (1)C contains no names from the set
K, and (2) ifg € C is a support variable, theggK € A, too.

type A, but it does not introduce a new name into the name
context. As usual, capture avoiding substitution is defined to
rename variables and names when descending into their scope.
Free support variables of a given typeare denoted bfp (A),

free variables of a terraby fv(e), and its free names afe(e).

Example 1To illustrate our language constructs and motivate
the further development, we present a version of the staged
exponentiation function that we could write in our system. In

This example we assume that the language is extended with the

base type of integers. In general, in the examples throughout
he paper, we will assume the additional type and term con-
structs as we need them, either to illustrate the point or just
improve readability. In any of the cases, the addition should

not impose tremendous technical difficulties.

pow’ =
fix pow’ :Vp. O(int[p])->int->0(int [p]).
Ap. Ae:0(int[p]). An:int.
if n = 0 then box 1
else
let box el = pow’ [p] e (n - 1)
box e2 = e
in
box (el * e2)
end
pow : int -> O(int -> int) =
An:int.
new X:int in
let box e = pow’ [X] (box X) n
in
box (Ax:int. {X = x} e)
end
- sgcode =

pow 2;
val sqgcode =
box (Ax:int. x * (x * 1)):0(int->int)

The functionpow takes an integen and generates an inte-

ger namex. Then it calls the helper functiopow’ to build

the expressior= X « - - - %« X x1 of annotated typent [X] . Fi-
N —

n
nally, it substitutes the nanmein e with a newly introduced
bound variable:, before returning. The helper functieaw’
is support-polymorphic; its support varialyteis instantiated
with the relevant support set as part of the application.

Notice that the generated residual code fqtode does not

contain any unnecessary redices, in contrast totheersion
of the program from Section 2.

3.1 Auxiliary judgments

In order to state the typechecking rules, we will need a couple
of auxiliary judgments. First is the judgment fdisjointness

Enlarging an appropriate context by a new variable or a name (also referred to a8eshnespof support sets. It has the form

is subject to Barendregt's Variable Convention: the new vari- A+ C # K, whereA is a context storing support variables with

ables are assumed distinct, or are renamed in order not to clashheir freshness annotatior@,is a support set, and is a set

with already existing ones. Terms which differ only in names of names. The judgment is satisfied if none of the names from

of their bound variables are considered equal. The type con- K appears irC, and if all the variables fronC are declared
disjoint fromK in the context.

Simple types P:= 1|Ph—P

Types A 1AL — A2 |O(AIC)) |%IPA|Vp#K. A

Terms e u= x|x|X|\xA e|e e |boxe|letboxu=eyine|
X.e|le@X|newX:Pine|Ap#K.e|e[C]] | {a=e1} e |fix XA e

Variable contexts r = -|FxA|TEAC] | T u:AC]
Name contexts S:= -|SXP
Supportvariable contextsA = | A, p#K

Figure 1. Syntax of the core languageK is a finite set of names, an is a finite set of names and support variables).

The concept of disjointness for support sets is then extended to The typing rules of our language are presented in Figure 2. We
disjointness for types, so that we have a judgnientA # X, explain the most important ones of them next.

whereA is a type anX is a name. It is satisfied K does not

appear free in the dependenciesfobn any code level. We Hypothesis rules Notice first that the hypotheses rules ex-
will often combine the two judgments into a new judgment for ist only for the ordinary value variables and for the reflexive

disjointness oannotated typeA + A[C] # X. expression variables. The non-reflexive variables cannot be
accessed until they are turned into the reflexive ones by the
Also required is a judgment to decide if a given typds rule forbox introduction. Thus, as already commented before,
well-formed in the name conte8 and parameter conte®, non-reflexive code expressions cannot be evaluated, but can
i.e. whether all thdree namesand support variables & are only be used to compose new code expressions. The intention
declared irSor A, respectively. We denote it &A H A wf. behind this is to prevent evaluation of code which is not closed.

In addition, all the hypothesis rules check if the their support
We next define weakening on types: if a type depends on a sets are well-formed, i.e. if all the names and support vari-
certain set of names, we can always pass it as a type with aables are declared in the name cont&xnd the dependency
superset of names instead. Notice that we may need to alpha-variable contexf\.
rename the bound hames when comparing ltatgpes.

A-calculus fragment The rule forA-abstraction relies on one

Bi<iAr A<iB A<:B of the auxiliary judgments to check whether the tybeof

the bound variable is well-formed, i.e. whether all its names

11 AL—= Ao <iBr— By xl/:lpAg' xV:lPB and support variables have been already declared in the name
A<:B CCD A<:B KCM contextS and support variable conte& This ensures that
— — the contexts used in the judgment are kept well-formed. The
O(A[C]) <:O(B[D]) VpH#K. A< Vp#M. B synthesized type8 does not have to be checked for well-

formedness, as the typing rules guarantee it.
Finally, we implicitly equate two type#& andB if A<: B
andB <: A. This is justified by the fact that two types will Modal fragment Just as in\"-calculus, our rule forbox
be in this relation iff they differ only in the ordering of names checks the boxed expressieragainst a variable contekt”
and variables in their supports. But support sets are indeed from which the value variables have been erased. In addition,

considered sets, so this ordering should not matter. IV changes the status of all the nonreflexive expression vari-
ables into reflexive ones, so that they can be useqébeing
3.2 The type system on a higher code level frorhox €). The support set diox e
is empty, and thus it can be freely extended in the judgment by
The typing judgment of our language has the form a well-formed support s@. We also have two different rules
for thelet box constructor: one classifies its local variable as
ST Fae:AC] reflexive, the other classifies it as non-reflexive, depending on
It reads: in the presence of name cont@xtariable contexf the support set of the expression bound to the variable.

and support variable conte#t the terme has typeA and the

support ofe is includedin C. As customary, we presuppose Names fragmentThe construchew generates a fresh name,
that all involved contexts are well-formed. In particular, all @nd then checks, using the auxiliary disjointness judgment, if
the variables, names and parameters are distinct, and all theirth® Synthesized type and support set do not contain free occur-

types are well-formed. rences of this new name. The operatit#X extends withX

the freshness annotation of every support variabl&. i his
Before proceeding further, we define an operafiénon vari- is justified becausk is a new name, and is necessary in order
able contexts. It erases the ordinary variables fiorand to type possible abstractions with naién the body ofnew.

changes nonreflexive expression hypothdsdsinto reflex- i o
ive onest::A. As already hinted before, it will be used in the [N our system, just like in FreshML, the process of name
box introduction rule to make the non-reflexive variables ac- aPstraction and concretion gparatedirom name creation

cessible under the box. v_vhich is carried out bylew_. Thus, the t_yping ru_Ies for abstrac-
- tion, concretion and explicit substitution require that the name
_(')v - they use has already been placed into the name context. The
(r,x.A)v = rv side conditiomA - fp(A) # X in the typing rules for abstrac-
(M t=AC))Y = T, t:AC] tion and concretion is a bit harder to explain. It ensures that the
(F,uzAC)Y = TV, u:A[C]

xAel CCdom(SA) uzAlClel’ CCDCdom(SA) X:PeS CcCdom(SA)
ST kax:A[C] ST kau:A[D] ST Fa X:P[X,C]
SAFAwf SI,xAkpe:B[C] x¢dom(l) STHaer:A—BIC] ST hae:AlC
ST HaAxA e: A— B[C] ST Hae e :B[C|
SAFAwf ST,xAbae:A[C] x¢&dom(T)
ST Fafix XA e: A[C]
STV pe:A[C] DCdom(SA) STkae :0OA[IC] ST,u:Al]Fae:B[C] ugdom(l)
ST a boxe: O(A[C]) [D] ST aletboxu=e;ine:B[C|
STHFae :O(AD])[C] ST,t:AD]Fae:BIC] tZ¢dom(l) D#0
ST Faletboxt =ein e : B[C]
SX:P;TFae:AlC] AFfp(A) # X SXPTFae: (M A)C] A-fp(A) #X
SX:PiTFaX. e (M A)[C] SX:P;T Fpe@X:A[C]
SX:P;T Fasx €1 A[C] A#XAC] # X X ¢ dom(9)
ST FanewX:Pin e: A[C]
ST Fapu €:A[C] pgdom(d) ST Hae:Vp#K.A[C] AFD #K D Cdom(SA)
ST Fa ApHK. e: Vp#K. A[C] ST kae[D]: ([D/plA)[C]
SX:P;TFaer:P[C] SX:P;Ikaer:BIX,C Srtae:AlC] A<:B
SX:P;TFa{X=e1} e :B[C] ST Fae:B[C]

Figure 2. Typing rules of the core language.

support variables occurring mcould not be substituted with

a set containing the namé. If that were possible, the new
occurrence ofX would be abstracted on the level of terms,
but there would be no binding in the corresponding type, thus
causing unsound behavior. The reason for that is that the quan-
tifier in |/|pA is itself a binder, and two name abstraction types

which differ only in the identities of their bound names, are
considered equal.

Another important observation about the rule for name ab-
straction is that it does not change the supguf the in-
volved term. In particular, it does not remove the abstracted
name from it. This is justified by the intended interpretation
of name abstractio(X . e): it first evaluatests bodye before
creating the closure wit. Thus, the set of names that need
to be provided with definitions in order to evalugi¢. e) is

the same set required for the evaluationeafself. In other
words, the two expressions have the same support. Similar
considerations motivate the typing rule for concretion as well.

Subtyping As already commented before, the nature of sup-
port sets makes it natural to pass a type with a smaller support
annotation when a type with a bigger support annotation is re-
quired. Thus, we provide a rule that explicitly coerces terms
into types with extended support, as defined by one of the aux-
iliary judgments.

In the rest of this section we present the basic structural prop-
erties of our calculus. As a first step, notice that the usual
properties of exchange, weakening and contraction for vari-
able context” hold in our system, too. In addition, we have
exchange and weakening for name contexts, support variable
contexts and support sets themselves. Strengthening of vari-
able contexts holds as well: if a term which does not mention
a certain variable € I' is well typed, then it is well typed in

the context obtained by omittingfrom I

We define two new operations on contexts,andrlr 4, which,
together with the already defindd”, will be important for
stating the substitution principles for our language” re-
moves the ordinary value variables frdm leaving only ex-
pression variables in itf4 changes the reflexive expression
variables with nonempty name dependencies into nonreflexive
ones.

(.)9 = .
(MxA)° = T°
(M t=AIC)® = T t=AC)
(M u:AlC)® = I u:A[C]

consider the case when = uin the contexf” = u::A[X]. The
substitution{X /e; }u produces a terr itself, but there is no

()" = typingS T Fa u: A[]. Thatis why we require that the involved
(rxA)® = T2 xA reflexive variables have no support. In retrospect, the need
(M t=AC)® = T2 t:AC to distinguish between expression variables with and without
. A A support, which arises from this principle, was the main reason
(MuADD® = 7%, uAD) why we introduced nonreflexive variables into the design of
(F,uzAC)® = T u=A[ClifC#0 the type system at all, instead of staying with only the reflex-

ive variables of\U.

The next step is to define a capture-avoiding name substitu- Another observation of crucial importance is that the local
tion {X/e}€’. It substitutes the nam by e, butonly onthe \ariables of a boxed expression form a contExwhich is
current code levein €; the occurrences of on higher code exactly of the form the Principle 1.4 requires, ile= 2.
levels (i.e. under boxes), as well as the names in abstracting This can easily be seen, as all the reflexive variables which
and concreting positions, or in polymorphic abstractions and || pe put into the context have empty support (see the typ-
instantiations will not be touched. This operation and its cor- ing rules forlet box in Figure 2). This would allow us to use
resporyding substitqtion principlg (Lemma 1.4) will be used ne meta operation of name substitutipa /X }e, to define
to justify the operational semantics of the term construct for the gperational semantics of the language construct for name
name substitutiofX = e} €. substitution{X = e;} &. The idea is to use this construct

) . to perform substitutions within box-annotated expression, and
We further adopt the operatigiX Y)(—) of name transposi- the Principle 1.4 ensures that these substitutions can be car-
tion (or name swappingfrom Nominal Logic and FreshML igq out without the postponement of evaluation which is the

[17]. The operation interchanges all the occurrences of names ;3| operational semantics associated with boxed expressions
X andY in the argument expression/type/context/support set. in AD

Name transposition is different from name substitution: the
former swaps two names throughout the given term or type,
no matter the code level on which any of the names occur
while the later only works on the current code level.

The following lemma describes the behavior of typing with

' respect to substitution and name transposition. Itis used in the
proof of the Type Preservation and Progress theorem to justify
the operational semantics assigned to the term constructors for

Lemma 1 (Substitution Principles) support-polymorphic instantiation and concretion.
1. ifSTFper:A[Cland ST, x:AFp € : B[C], then ST p

[e1/x]ez - B[C]. Lemma 2 (Parametricity)
1. if ST Fp pax €: A[C] and D is a well-formed support set,

2. ifST{ Fper i A[D] and STz, uAD] Fa € BC), then ie. D C dom(SA), and is fresh for K, ie. Al D # K,

STy,lM2ka[e1/ulez : B[C]. then

3. if ST Fp e A[D] and ST, t::AD] Fp €2 : B[C], then S[D/p|l Fa [D/ple: ([D/pA) [[D/pIC]
S M,Foka [el/t]eg . B[C}

4. if SX:P;T1Fa € : P[C] and SX:P;T5 Fa €21 B[X,C], 2. 1:fS; I Fa e: A[C], and X,Y:P are names (not necessarily
then S X:P;T'1, T4 Fa {€1/X}e : BIC]. inS), then

(XY)S (XYM Fx v)a (X Y)e: (X Y)A[(X Y)C]

The premises in the formulation of the substitution principles
deserve further elaboration. Principle 1.2 requires that the sub- . .
stituted termey is typable in a context?, i.e. thatitdoesnot 4 Operational semantics
contain any free value variables. The intuition behind this is
thate; substitutes aexpressiorvariableu. Expression vari- In this section we define the structured operational semantics
ables may occur on multiple code levels, so the substitution for our core language, and formulate the appropriate Progress
will copy e; to multiple code levels too. But the ordinary and Type Preservation theorem. We start by introducing the
value variables are anchored by the type system to only the notion of contraction which will be instrumental in defining
current code level, and thus must contain none of them. thevaluesof ourlanguage. The idea is that we do not consider,
Similar considerations guide the formulation of Principle 1.3. like in AU, that all boxed expressions are values. Rather, in or-
The added twist is that the nonreflexive expression variables der to be values, boxed expressions have to be “contracted”,
from I'1 can be treated as reflexive @ becauses; will not i.e. notreduced completely, but only freed of (some) name
occur in executable positions in the residual term. substitution they may contain. The name substitutions that are
carried out (i.e. contracted) under a box in a given expression
Most importantly, Principle 1.4 requires that the context in satisfy two properties: (1) they occur on the current code level,
both the second premise and in the conclusion be of special and (2) the substituted name is created outside of the boxed
form 2, i.e. that its reflexive variables only have empty sup- term, rather than being local to it. This is in accordance with
port. Note that the principle describes a way to reduce the the above observation about the Substitution Principle 1.4 that
support of a terme, by substituting away the nanm. But, the variable context of variables encountered when travers-
the way the operation of name substitution is defined, it may ing the current code level of a boxed teramd not descending
not necessarily change the expressigiitself. For example, into further and further boxess always of a form™ = 2.

Thus, the said substitution principle is applicable, and the en- to inspect the structure of an object program and destructitinto
countered name substitutions can actually be carried out with- its component parts. For the purposes of this work, we limit

out postponing. ourselves to intensional analysis of only the simply typed
calculus fragment of our language. Thus, admittedly, our cur-
The judgment for contraction has the form rent results are far from complete, but nevertheless, we present
s them here as a first step towards a stronger and more robust
e—=>w system.
and means: if the name substitutions in the expressioh Patterns 1 = x|X|X|[E X - -Xn] | AXP 11|
namesother than thosén Sare carried out, we obtain. The (Tq) (T:P)

“protected” seScarries the locally defined namesafsee the . .
contraction rule fonew), and is introduced in order to comply The higher-order patterfE Xl"'Xr]] declares a pattern vari-
with the requirement (2) from above. The judgment is defined able E matching a code expression subject to condition that

with the rules the expression’s free variables are amang. . ,x,. We will
Sxp denote pattern variables with capitaland its variants. Pat-
e~ w ternAx:P. tmatches a lambda expression of domain tiypé
S declares a variabbewhich is local to the pattern, and demand
newX:Pin e—= newX:Pinw that the body of the matched expression conforms to the pat-
s s ternTt Bound variables, likex above, are to be distinguished
e —wp e — Wy X € dom(S) from pattern variables, likéE x---Xq]. The later provides
a placeholder for the matching process; upon execution of a
X=eg}e S, {X=w}ws successful matching, it will be bound to a certain expression.
The former is just a syntactic constant, which is introduced by
e iwl & S, Wo X ¢ dom(S) a pattern for lambda expressions, and can match only itself.
Patterna matches a nama from the global name context.
X=ele S, {w/X W Pattern(my) (Tp:P) matches an application; in order to avoid

polymorphic types in patterns, we require that the this pattern

and is structural (i.e. commutes) with the other language con- proscribes the exact type of the argument in the application.

. . S .
structs. An expressioa is S-contractedf e = e. It is con- The judgment for typechecking patterns has the form
tractedif and only if it is O-contracted. We use the letterto
range ovetS-contracted expressions. ST IFaT:P[Cl=T1

. o and reads: in the context of global nan®8:global parameters
Lemma3A(Contract|on Termination)) A, and a context of locally declared variablesthe pattern
IfS;,$;T* Fa : A[C] then there exists unique term W, such T has the typeP, support seincluded in Cand produces a
thate 2 w. Furthermore, W is Sp-contracted and Sy, ;72 p residual contexf 1 of pattern variables and their typings. This
w:A[C]. residual context is to be passed to subsequent computations.

The rules of this judgment are presented in Figure 4. Note that,

because we are limited to only the simply-typed fragment, the
We can now define our syntactic category of values. local variables that the typing rules depositlirwill always

be ordinary value variables, and always simply typed. On the

v i= x[Axe|X.v|Ap#K. e| boxw other hang, we do allow a bit more g)éneralﬁ)t;ir)l/?he case of

It is not difficult to prove that name substitution preser@es ~ pattern variable$E x; - -~ Xn]; they still can match only terms
contracted expressions. In the same way, name transpositionof simple types, but these terms can have subterms of more
preservesS-contracted expressions as well, and as a conse- general typing. However, it will always be the case that=
quence, it also preserves values. { which is easy to show.

We are now in position to define a small-step operational se- In order to incorporate pattern matching into the core lan-
mantics (see Figure 3), and formulate the Type Preservation guage, we enlarge the syntax with a new term constructor.

and Progress theorem for the core part of the language. Note .
that the theorem requires empty variable contexts and support. Terms e = ...|casee of boxm= e elsee,

The intended operational interpretationazfseis to evaluate

Theorem 4 (Progress and Type Preservation) the argumenty to obtain a boxed expressidiox w, then
IfS;-+e: A[], then either matchw to the patterrrt If the matching is successful, it cre-
) ates an environment with bindings for the pattern variables,
1. eis a value, or and then evaluates; in this environment. If the matching

fails, the brancte; is taken. The typing rule foraseis:
2. there exists S D Ssuch that S e — S, €; furthermore

€ is unique and S;- € 1 A[]. STFae:OPD)N[C] S-IFam:PD]=T1
Sr.likae:B[C] ST ae:B[C]
5 Intensional code analysis ST Fa caseey of box T= g elsee; : B[C]

This section presents the definition and the theory of pattern- Observe that the upper-right premisecaserequires an empty
matching on code expressions. Pattern matching code is usedvariable context, so that patterns cannot contain outside value

Se;—S.¢ Ser— 8.6
S (e &) — S, (€ &) S (vie)— S, (v16) S ((AxA.e)v) — S [v/xle
Se1—S.€¢
S (letboxu = in &) — S, (letboxu=¢€,ine) S(letboxu=boxwin &) — S [w/ule;

e—w enot contracted
S fix x:A. e— S [fix x:A. e/x]e S box e— S boxw S (newX:Pin e) — (S X:P),e
Ser— S, € Se—S.¢ Ser—— S, €
S(X.e—8,(X.€) Ss(e@X)—S,(€@x) SE.V@X+—SXY)V sg(e[c])— S, (¢ [C])
Se— S,

S(AP#K.€)[C])—S[C/RE S((X-e}e)r S (Xee) SUX=Ve)—S{vXle

Figure 3. Structured operational semantics of the core language.

xR er C Cdom(S4) C Cdom(S,A) CCdom(SA)
ST lka [EX}:P[C]=>E:X|f!P1...x|:!PnD(P[C7>?]) ST,xPlFaX:P[Cl=>- SXP;llkaX:P[X,Cl=>-
ST xPLlFaT: P [Cl=T1 STlkFaT:P,—P[Cl=T1 STikam:P[Cl=T;
STIFAAXPL TP — P [C]=T ST A (Th) (e : P2) : P[C]=T1,T2

Figure 4. Selected typing rules for patterns.

or expression variables. the pattern variabl& to a term obtained frorw in which the

listed variables; are substituted by newly generated nanges
The operational semantics for patterns is given through the and then abstracted. The soundness of the operational seman-
new judgment tics for patterns hinges on the following definition and lemma.

Shwen= 8,0 Definition 5 (Types for Substitutions)

which reads: in a global context of nam8sglobal context The judgment Skp O : T denotes that O is a substitution for
of parameterd, context of local variableE, and the support the variables in ", and that the substituting terms allow occur-
C, the matching otontractedexpressionw to the patterrrt rences of only the names in S In other words Sk @ : T if for
extends the global store 8 and generates a substituti@n every pattern-variable E:A € T we have S;- b ©(E) : A[].

for the pattern-variables af. We present several interesting

rules below. Lemma 6 (Pattern-matching Type Preservation)

If ST{ IFa 2 P[C]==T2 and ST{ p w: P[C] and
fv(w) C {xq,..., X} X1,..., Xnfresh x:P el SATS:we—S,0, then S H ©: 5.

SA;T;w [EX|= (SX:P),[E — (X. box [X/Jw)]

The theory already developed for the core languages readily

SA T xPw>T=S,0 extends to intensional code analysis. In particular, it is easy to

.] establish the new cases arising in the Substitution Principles
SAT AP Wi AP —S,0 (Lemma 1), Parametricity of Typing (Lemma 2), and espe-

cially in the Progress and Preservation theorem (Theorem 4).

STHiwi>m=—5,01 The interested reader is referred to the forthcoming report [12]
STFwy: P [g for the details.
STW D> Th=—3,0,
ST (W w2) > (1) (Te:P2) = %, (01002) Example 2 We can generalize the exponentiation ex-
ample further: instead of powering only integers, we
As already mentioned, the pattern variafifex; - - - x»] should can power functions too, i.e. have a functional com-
match an expression provided thatwv depends only on vari- puting f — Ax. (fx)". The functional is passed the

ablesxy, ... ,xn. Thus, the rule for pattern variables explicity code for f, and an integem, and returns the code for
provides the required check. The residual substitution binds Ax. (fx)". The idea is to have this residual code be as

fpowl : O(int->int) -> int -> O(int->int)
Af:0(int->int). An:int.
let box p = pow n
box g = £
in
box (Az:int. p (g z)
end

-fpowl (box Ay:int. y + 1) 2;
val it = box (Az:int. (Ax.x*(x*1))
: O(int->int)

((Ay.y+1) 2))

optimized as possible, while still computing the extensionally
same result. One possible implementation of this functional in
our core language is given above. As a matter of fact, there is
at least one other way to obtain the same: we can eliminate the
outer beta redex from the above residual code, at the price of
duplicating the inner one.

fpow2
Af:0(int->int). An:int.
new X:int in
let box f’
box e
in
box (Ax:int. {X = x} e)
end

£
pow’ [X] (box (£’ X)) n

- fpow2 (box (Ay:int. y + 1)) 2;
val it
box (Ax:int.

: O(int->int)

(Ay.y+1) x) * ((Ay.y+1) x) * 1)

Neither of the above implementations is quite satisfactory,
since, evidently, the residual code in both cases contains un-
necessary redices. The reason is that we do not utilize the
intensionalinformation that the passed argument is actually a
boxedlambdaabstraction, rather than a more general expres-
sion of a functional type. Both the shown programs can be en-
coded in other meta-programming languages sucdki-asnd
MetaML. In AH, one has to be content with a rather weaker
program that produces even more unnecessary redices. But
in our language extended with intensional code analysis, we
could do a bit better. We could test the argument at run-time
and output a more optimized code if it is a lambda expression.
This way we obtain the most simplified, if not the most effi-
cient residual code.

fpow : O(int->int) -> int -> O(int->int)
Af:0(int->int). An:int.
case f of
box (Ax:int. [E x])

new X:int in

=>

let box F = pow’ [X] (E @ X) n
in

box (Ax:int. {X = x} F)
end

else fpowl £ n

- fpow (box Ax:int. x + 1) 2;
val it = box (Ax:int. (x+1)*(x+1)*1): O(int->int)

Example 3This example is a (segment) of a function for sym-
bolic differentiation. The function takes a name abstraction as

an argument: the body of the abstraction is a boxed term en-
coding the expression to be differentiated; the abstracted name
represents the variable with respect to which the differentia-
tion takes place. When the boxed expression is a sum of two
subexpressions, the function just recurses over them. When
the boxed expression is a beta-redex (of a limited form), it first
reduces it before recursing. Other names and constants are
matched in the default case, which thus returns the derivative
0.
diff : Vp. (MX:real.Oreal[X, pl) —>
(NX:real.Oreal (X, p])

fix diff.
NAp. Ae: (UX:real.Oreal(X, pl).
new X:real (* the differentiating name *)
in
case (e @ X) of
box X => X. (box 1)
| box ([El] + [E2]) =>

let box el = (diff [p] (X.E1)) @ X
box e2 = (diff [[p] (X.E2)) @ X
in
X.box (el + e2)
end
| box ((Ax:real. [El x]) [E2]:real) =>
new Y:real in
let box el = El @ Y
box e2 = E2
in
diff [p] (X.box ({Y = e2} el))

end
else X. (box 0)

Notice that the present lack of polymorphic patterns prevents
us from recognizing, let alone reducing all the beta redices that
could possibly occur in the argument; we currently let them
pass through the default case.

6 Conclusions and future work

This paper presents a typed functional language for meta-
programming, employing a novel way to define a modal type
of code. The system combines tNe-calculus [15] with the
notion of names based on the developments in FreshML and
Nominal Logic [17, 7, 16, 6]. The motivation for combin-
ing the two comes from the long-recognized need for meta-
programming to handle code expressions with free variables
[2, 22, 11]. A provides a way to encode closed syntactic
code expressions, and names serve to stand for the eventual
free variables. Taken together, they give us a way to encode
open syntactic code expressions, and also compose, evaluate,
inspect and destruct them.

Another way to view the work presented here is as a higher-
order extension of the FreshML concept of names. Indeed,
in FreshML, types of names are separated from the types of
the rest of the language. In this sense, the syntax trees that
FreshML can manipulate are first-order. But, if one wants syn-
tax trees of typed syntax (i.e. “higher-order” syntax), then it
seems necessary to make a distinction between the meta-level
and the object-level (i.e. syntax level) of the language. In other
words, one needs a modal type constructor likelouNot sur-
prisingly then, yet another way to view our contribution is as

a generalization of the system presented in [4] for primitive
recursion over higher-order abstract syntax.

We list below some extensions of the language which we hope
to explore in the future.

Higher-order types for namesWith the limitation that names

can

only be simply-typed, our language can encode only ob-

ject programs with simply-typed free variables. This makes it
a two-level, rather than a multi-level language like’ and
MetaML. It would be interesting to investigate how further
generalization of the typing for names, if possible at all, will
influence the rest of the language, in particular the operations [13]
of name abstraction and concretion.

Type polymorphism and type-polymorphic recursionIn a
meta-programming language, the typing of object programs is
made part of the typing of the meta programs. Consequently,
such a language has a lot of types to care for and thus needd15]
strong notions of type polymorphism. This was already evi-
dent from our example program for symbolic differentiation
in Section 5.

Models Last, but probably most important, we should build
models for our type system and put it on a sound logical foot-

ing.

Interaction between names and modal logic has been

of interest to philosophical investigations for quite some time
(see [9] and [5]). We hope to draw on this work for the future
developments.

7
(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

References

C. Calcagno, E. Moggi, and T. Sheard. Closed types for a safe
imperative MetaML Journal of Functional Programmin@001.
to appear.

R. Davies. A temporal logic approach to binding-time analy-
sis. In E. Clarke, editorProceedings of the Eleventh Annual
Symposium on Logic in Computer Scierzages 184-195, New
Brunswick, New Jersey, July 1996. IEEE Computer Society
Press.

R. Davies and F. Pfenning. A modal analysis of staged com-
putation. InConf. Record 23rd ACM SIGPLAN/SIGACT Symp.
on Principles of Programming Languages, POPL’'96, St. Peters-
burg Beach, FL, USA, 21-24 Jan 1998ages 258-270. ACM
Press, New York, 1996.

J. Despeyroux, F. Pfenning, and C. 8amann. Primitive re-
cursion for higher-order abstract syntax. In R. Hindley, edi-
tor, Proceedings of the Third International Conference on Typed
Lambda Calculus and Applications (TLCA'9Pages 147-163,
Nancy, France, Apr. 1997. Springer-Verlag LNCS. An ex-
tended version is available as Technical Report CMU-CS-96-
172, Carnegie Mellon University.

M. Fitting and R. L. Mendelsohn.First-Order Modal Logic
Kluwer Academic Publishers, 1999.

M. J. Gabbay. A Theory of Inductive Definitions with-
Equivalence PhD thesis, Cambridge University, August 2000.

M. J. Gabbay and A. M. Pitts. A new approach to abstract syn-
tax with variable bindingFormal Aspects of Computing001.
Special issue in honour of Rod Burstall. To appear.

A. Griewank. On Automatic Differentiation. In M. Iri and
K. Tanabe, editorsMathematical Programming: Recent De-
velopments and Applicationpages 83-108. Kluwer Academic
Publishers, 1989.

[9]

(10]

(11]

[12]

[14]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

S. A. Kripke. Naming and Necessityarvard University Press,
1980.

D. Miller. An extension to ML to handle bound variables in
data structures. |Rroceedings of the Logical Frameworks BRA
WorkshopMay 1990.

E. Moggi, W. Taha, Z.-E.-A. Benaissa, and T. Sheard. An ideal-
ized MetaML: Simpler, and more expressive.Haropean Sym-
posium on Programmingages 193-207, 1999.

A. Nanevski. Meta-programming with names and necessity.
Technical Report CMU-CS-02-123, School of Computer Sci-
ence, Carnegie Mellon University, April 2002.

M. F. Nielsen. Combining close and open code. Unpublished,
2001.

M. Odersky. A functional theory of local names.Pnoceedings

of 21st Annual ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages (PORppges 48-59, New
York, NY, USA, 1994. ACM Press.

F. Pfenning and R. Davies. A judgmental reconstruction of
modal logic. Mathematical Structures in Computer Science
11:511-540, 2001. Notes to an invited talk at tverkshop
on Intuitionistic Modal Logics and ApplicationdMLA99),
Trento, Italy, July 1999.

A. M. Pitts. Nominal logic: A first order theory of names and
binding. In N. Kobayashi and B. C. Pierce, editof&CS vol-
ume 2215 ofLecture Notes in Computer Sciengeages 219—
242. Springer, 2001.

A. M. Pitts and M. J. Gabbay. A metalanguage for program-
ming with bound names modulo renaming. In R. Backhouse and
J. N. Oliveira, editorsMathematics of Program Construction,
MPC2000, Proceedings, Ponte de Lima, Portugal, July 2000
volume 1837 oLecture Notes in Computer Scienpages 230—
255. Springer-Verlag, Heidelberg, 2000.

N. Ramsey and A. Pfeffer. Stochastic lambda calculus and mon-
ads of probability distributions. I'€onf. Record 29th ACM
SIGPLAN/SIGACT Symp. on Principles of Programming Lan-
guages, POPL’'02, Portland, OR, USpages 154-165, New
York, 2002. ACM Press.

G. J. Rozas. Translucent procedures, abstraction without opac-
ity. Technical Report AITR-1427, Massachusetts Institute of
Technology Atrtificial Intelligence Laboratory, 1993.

T. Sheard. Accomplishments and research challenges in meta-
programming. In W. Taha, editd8AIG volume 2196 of ecture
Notes in Computer Sciengeages 2—44. Springer, 2001.

W. Taha. A sound reduction semantics for untyped CBN multi-
stage computation. or, the theory of MetaML is non-trivaCM
SIGPLAN Notices34(11):34-43, 1999.

W. Taha. Multi-Stage Programming: Its Theory and Applica-
tions PhD thesis, Oregon Graduate Institute of Science and
Technology, 1999.

P. Wickline, P. Lee, and F. Pfenning. Run-time code genera-
tion and Modal-ML. InSIGPLAN Conference on Programming
Language Design and Implementati@ages 224—-235, 1998.

P. Wickline, P. Lee, F. Pfenning, and R. Davies. Modal types as
staging specifications for run-time code generatid@M Com-
puting Surveys30(3es), 1998.

