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Abstract

Meta-programming languages provide infrastructure to gener-
ate and execute object programs at run-time. In a typed setting,
they contain a modal type constructor which classifies object
code. These code types generally come in two flavors: closed
and open. Closed code expressions can be invoked at run-time,
but the computations over them are more rigid, and typically
produce less efficient residual object programs. Open code
provides better inlining and partial evaluation of object pro-
grams, but once constructed, expressions of this type cannot
in general be evaluated.

Recent work in this area has focused on combining the two no-
tions into a sound system. We present a novel way to achieve
this. It is based on adding the notion ofnamesfrom the work
on Nominal Logic and FreshML to theλ�-calculus of proof
terms for thenecessityfragment of modal logic S4. The re-
sulting language provides a more fine-grained control over
free variables of object programs when compared to the ex-
isting languages for meta-programming. In addition, this ap-
proach lends itself well to addition of intensional code analy-
sis, i.e. ability of meta programs to inspect and destruct object
programs at run-time in a type-safe manner, which we also
undertake.

Categories and Subject Descriptors
D.3.1 [Software]: Programming Languages —Formal Defi-
nitions and Theory
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Languages
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1 Introduction

Meta-programming is a paradigm referring to the ability to al-
gorithmically compose programs of a certain object language,
through a program written in a meta-language. A particularly
intriguing instance of this concept, and the one we are inter-
ested in in this work, is when the meta and the object language
are: (1) thesame, or the object language is a subset of the
meta language; and (2)typed functional languages. A lan-
guage satisfying (1) makes it possible to also invoke the gen-
erated programs at run-time. This setup is usually refered to
ashomogeneousmeta-programming [20].

Among the advantages of meta-programming and of its homo-
geneous and typed variant we distinguish the following (and
see [20] for a comprehensive analysis).

Efficiency Rather than using one general procedure to solve
many different instances of a problem, a program can gen-
erate specialized (and hence more efficient) subroutines for
each particular case. If the language is capable of executing
thus generated procedures, the program can choose dynami-
cally, depending on a run-time value of a certain variable or
expression, which one is most suitable to invoke. A particular
instance of this idea is the functional programming concept of
staged computation, and has been considered before in a typed
setting [23, 24, 3].

Maintainability Instead of maintaining a number of special-
ized, but related, subprograms, it is easier to maintain their
generator. In a language capable of invoking the generated
code, there is the added bonus of being able to accentuate the
relationship between the synthesized code and its producer;
the subroutines can be generated and bound to their respective
identifiers in the initialization stage of the program execution.

Languages in which programs can not only be composed and
executed but also have their structure inspected add further ad-
vantages. Efficiency benefits from various optimizations that
can be performed knowing the structure of the code. For exam-
ple, Griewank reports in [8] on a way to reuse common subex-
pressions of a numerical function in order to compute its value
at a certain point and the value of itsn-dimensional gradient,
but in such a way that the complexity of both evaluations per-
formed together does not grow withn. Maintainability (and
in general the whole program development process) benefits
from the presence of types on both the level of synthesized



code, and on the level of program generators. Finally, there
are applications from various domains, which seem to call for
the ability to execute a certain function as well as recurse over
its structure: see [19] for examples in computer graphics and
numerical analysis, and [18] for an example in machine learn-
ing and probabilistic modeling.

Recent developments in type systems for meta-programming
have been centered around two particular modalλ-calculi:
λ� and λ©. The first is a language of proof terms for the
modal logic S4, whose necessity constructor� annotatesvalid
propositions [3, 15]. The second is the proof language for dis-
crete linear temporal logic, whose modal operator© anno-
tates the time-level separation between propositions [2]. Both
calculi provide a distinction between levels of terms, and this
explains their use in meta-programming. The lowest, level 0,
is the meta language, which is used to manipulate the terms on
level 1 (terms of type�A in λ� and©A in λ©). This first
level is the meta language for the level 2 containing another
stratum of boxed and circled types, etc. Functional program-
ming interpretation of these two constructors assigns type�A
to closed codei.e. to closed terms of typeA, while©A is the
type ofpostponedcode, i.e. it classifies terms of typeA which
are associated with the subsequent time moment. Postponed
code inλ© may refer to outside context variables, as long as
they are on the same temporal level, and this has contributed
to it frequently being associated with the notion ofopencode.
For this exact reason, the concept of code inλ© is obviously
broader, allowing for more expressiveness and generation of
better and more optimized residual programs (as already ob-
served in [2]), but, unlikeλ�, it has no language support for
mixing of the code levels, and in particular, no language sup-
port for execution of the generated code.

There have been several proposed systems which incorpo-
rate the advantages from both languages, most notable being
MetaML [11, 22, 1]. MetaML starts with the postponed/open
code type ofλ© and strengthens the notion to introduce closed
code as its refinement – as postponed code which happens to
contain no variables declared outside of it. The approach of
our paper is the opposite. Rather than refining the notion of
open code, we relax the notion of closed code. We start with
the system ofλ�, but provide the additional expressiveness by
allowing the code to contain specified object variables as free
(and rudiments of this idea have already been considered in
[13]). The fact that a given code expression depends on a set
of free variables will be reflected in its type. The object vari-
ables themselves are represented by a separate semantic cate-
gory of names (also called symbols or atoms), which admits
equality. The treatment of names is adopted, with significant
modifications, from the work on Nominal Logic and FreshML
by Pitts and Gabbay [7, 17, 16, 6]. This design choice lends
itself well to the addition, in anorthogonal way, of intensional
code analysis, which we also undertake for the simply-typed
segment of the language. Thus, we can also treat our simply-
typed code expressions as data; they can not only be evaluated,
but can also be compared for structural equality and destruc-
ted via pattern-matching, much in the same way as one would
work with any abstract syntax tree.

2 Background

In this section we review the basic development ofλ�-
calculus. We describe only the core language, but in the pre-
sented examples we assume the presence of certain types and
term constructs, like integers, conditionals or recursion. We
refer the reader to the accompanying technical report [12] for
a more detailed treatment of this and other related work. The
example we use throughout for illustration is the exponentia-
tion function, presented below in a MinML-like notation.

pow = fix pow:int->int->int.
λn:int. λx:int.
if n = 0 then 1 else x * pow (n-1) x

The functional programming motivation behind theλ� cal-
culus is to ensure proper staging of programs. For example,
consider the following equivalent of the exponentiation func-
tion.

pow’ = fix pow:int->int->int.
λn:int.

if n = 0 then λx:int.1
else

let val u = pow (n - 1)
in

λx:int. x * u(x)
end

One can argue thatpow’ is preferable topow because it al-
lows a partial evaluation of the function when onlyn is known,
but notx. Indeed, in such a situation, the expressionpow’ n
produces a residual function specialized to computing then-th
power of its argumentx. In particular, this function will not
perform any operations or make decisions at run-time based
on the value ofn; in fact, it does not even depend onn – all the
computation steps dependent onn have been taken during the
partial evaluation.

The type system ofλ� allows the programmer to specify the
intended staging of operations, so that computations from the
subsequent stages are independent of the computations from
the current stage. This is achieved by explicitly annotating
the stages of the computation and requiring that each stage is
a closedterm, i.e. that it is free of variables declared in the
surrounding code. Then the type system can check whether
the written code conforms to the staging specification, making
staging errors into type errors.

Types A ::= 1 | A1→ A2 |�A
Terms e ::= ∗ | x | λx:A. e | e1 e2 | box e |

let box u = e1 in e2
Contexts ∆,Γ ::= · | Γ,x:A
Values v ::= ∗ | λx:A. e | box e

To declare that a subterme of type A is closed,λ� provides
the type constructor� and its introduction termbox, so that
box e has type�A (consult the typing rules below). It is in
this sense that the type constructor� is associated with closed
code. In the spirit of this “run-time code generation” interpre-
tation, the operational semantics does not proscribe reductions
under the box; boxed expressions are values. For the purposes



of this paper, we will consider boxed code expressions to be
uncompiled, i.e. stored and carried around in the form of their
abstract syntax trees.

The elimination form for� is let box u = e1 in e2. Opera-
tionally, it evaluatese1 to a boxed value, then binds the unre-
duced expression under that box tou in e2. Notice thatu is
not an ordinary variable – it stands for an unevaluated closed
syntactic expression, rather than a value. This fact motivates
having two variable contexts in the typing judgment:Γ for or-
dinary value variables, and∆ for closed syntactic expression
variables. In order to have proper staging, code expressions
should not depend on value variables fromΓ, but they can de-
pend on expression variables from∆. The typing and evalua-
tion rules ofλ� are presented below.

x:A∈ Γ

∆;Γ ` x : A

u:A∈ ∆

∆;Γ ` u : A

∆;Γ,x:A` e : B

∆;Γ ` λx:A. e : A→ B

∆;Γ ` e1 : A→ B ∆;Γ ` e2 : A

∆;Γ ` e1 e2 : B

∆; · ` e : A

∆;Γ ` box e :�A

∆;Γ ` e1 :�A ∆,u:A;Γ ` e2 : B

∆;Γ ` let box u = e1 in e2 : B

c ↪→ c λx:A. e ↪→ λx:A. e

e1 ↪→ λx:A. e e2 ↪→ v2 [v2/x]e ↪→ v

e1 e2 ↪→ v

box e ↪→ box e

e1 ↪→ box e [e/u]e2 ↪→ v

let box u = e1 in e2 ↪→ v

The staging ofpow’ can be made explicit in the following way.

powbox =
fix pow:int -> �(int->int).

λn:int.
if n = 0 then box (λx:int. 1)
else

let box u = pow (n - 1)
in

box (λx:int. x * u(x))
end

Application ofpowbox at argument 2 produces a boxed func-
tion for squaring.

- sqbox = powbox 2;
val sqbox =

box (λx:int. x *
(λy:int. y *

(λz:int. 1) y) x):�(int->int)

It can then be evaluated in order to be applied itself.

- sq = (let box u = sqbox in u);
val sq = [fn] : int -> int
- sq 3;
val it = 9 : int

Thisλ� staging ofpowbox leaves a lot to be desired. In partic-
ular, the residual programs thatpowbox produces, e.g.sqbox,
contain variable-for-variable redices, and hence are not as ef-
ficient as one would want. Ideally, we would like to com-
pletely inline all the function calls fromsqbox and obtain
sqbox = box(λx:int. x*x*1). The reason the unwanted
redices occur is, of course, because boxed code expressions
are values; they completely suspend the evaluation of the en-
closed term. As witnessed by the example ofsqbox, it may
be advantageous to have a general programming mechanism1

whereby one could specify that certain reductions in a code
expression are to take place. Of course,λ� already contains
mechanisms to encode substitutions of closed code, but there
is no way to perform substitutions of open code which is re-
quired in thesqbox example. The solution should be to extend
the notion of code to include not only closed expressions, but
also expressions which may contain free variables.

3 Core language

In this section we present the syntax and static semantics of
our core language. It extends theλ� calculus with constructs
for a unified treatment of the notions of closed and open code
– a problem which initiated the extension ofλ© into MetaML
[11, 22]. The motivational distinction between these two sys-
tems and our calculus is that we want to provide intensional
code analysis as part of the language, whileλ© and MetaML
do not do that. To be clear, we believe that extendingλ© or
MetaML with code analysis is possible. It will most likely
require similar machinery as developed here, except that the
considerations would probably be more complicated because
these calculi are more involved thanλ�. At any rate, the ex-
tension ofλ� with the machinery required by code analysis
already attains enough expressiveness to encode quite a few,
if not all, interesting programs fromλ© and MetaML. Under-
standing the exact relationship between all these languages,
however, remains future work.

Our approach starts with the closed code ofλ�, and allows
a code expression to contain only those free variables that
have been listed as dependencies in its type. Only the ex-
pressions with no dependencies will be executable. To be-
gin with, we handle free variables of a code expression not
as meta-level bound variables (as it happens to be the case in
λ© and MetaML), but by a separate binding and abstraction
mechanism. The main reason is the following: intensional
code analysis ought to provide a test whether two free vari-
ables in a code expression are different or equal. The result
of this test is obviously not preserved under substitution, so
it looks questionable to tie the free code variables to outside
lambda abstractions. Having them both tied to the same mech-
anism of variable binding will almost certainly cause prob-
lems in the long run (as witnessed by, e.g., interaction of code
analysis with cross-stage persistence in MetaML, explained in

1Thus we are interested in something more than just devis-
ing an operational semantics which scans boxed expressions
and actually reduces all variable-for-variable redices.



[21]). The introduction of a separate binding mechanism for
free variables of syntactic code expressions has been proposed
before in [20], and even earlier in [10].

Furthermore, we do not want the variable introduction form
of this second mechanism to be a type introduction form as
well. The reason for this is that we want to support recur-
sion over syntax trees of code expressions. A function which
scans syntactic code expressions and recurses under a lambda
binder, has to provide some symbol to stand for the bound
variable, before it can go on and recurse over the body of
the abstraction. Introduction of that temporary symbol should
not change the type of the recursing function. Thus, we need
to resort tonames(see for example [14]). Additionally, we
opt to separate the operation of name creation (renameability),
from the name abstraction (hiding of a name), because that
provides strictly more expressiveness in manipulation of code
and names, than if the two are combined into a single con-
structor. This is where we employ the mechanisms of Nom-
inal Logic and FreshML, which were designed with exactly
that purpose in mind (see [16] and [17]). We introduce a new
semantic category ofnames(also called symbols, atoms or in-
determinates) which are to stand for free variables in boxed
expressions. Thus, boxed expressions, as before inλ�, cannot
contain free variables, but we allow them to contain names,
under the provision that the occurring free names are listed in
the type of the expression. Correspondingly, the boxed types
are now of the form�(A[C]) whereC is a finite set of names2

that the boxed term may depend on.

Informally, a termdependson a certain name if that name must
be provided with a definition before the term can be evaluated.
The set of names that a term depends on is called thesupport
of the term. The notion of evaluation that we have in mind
in these definitions is the one fromλ� calculus. In particu-
lar, since the boxed expressions inλ� are values, the boxed
expressions must have empty support.

For example, assuming for a moment thatX andY are names
of type int, and that the usual operations of addition, multi-
plication and exponentiation of integers are primitive in our
language, the term

t1 = X3 +3X2Y +3XY2 +Y3

would have typeint and support set{X,Y}. Indeed, in order
to evaluatet1 to an integer, we first need to substitute integer
values forX andY, and thust1 depends on bothX andY. On
the other hand, if we box the termt1, we obtain

t2 = box (X3 +3X2Y +3XY2 +Y3)

which has type�(int[X,Y]), but its support is the empty set, as
t2 is already a value. Notice how support of a term (in this case
t1) becomes part of the type, once the term itself is boxed. This
way, the types maintain the information about the support of
subterms of all code levels – no matter under how manybox’s
a subterm may appear. For example, the term

t3 = 〈X2,box Y2〉

has the typeint×�(int[Y]) with support{X}.

2Actually, C will have a bit more complex structure, to be
introduced shortly

As only expressions with empty support can actually be eval-
uated, we needs a construct that would eliminate a name
from the expression’s support, eventually turning unexecutable
expressions into executable ones. The construct for that is
{X .= e1} e2, and it stands forexplicit substitutionof the value
of e1 for the occurrences of the nameX on thecurrent code
level of e2. Notice the emphasis on the current code level; the
explicit name substitution ofX only removes the occurrences
of X which actually contribute to the support ofe2. It does
not (and it would not be sound if it did) remove those occur-
rences ofX which lie under one or morebox constructors.
This way, name substitution providesextensions, i.e. defini-
tions for names, while still allowing names under boxes to be
used for theintensionalinformation of their identity.

Another construct that we need in the language isname ab-
straction. Quite often we need to express that a term depends
on somename, but it is not really important how that name
is called (or the name is not accessible in the local context).
For example, such a need arises when recursing over a syn-
tax tree for aλ-expression. Before descending under theλ, a
temporary name has to be introduced on the fly to stand for
the bound variable, but the identity of that name is not really
important. We adopt the treatment of name abstraction from
Nominal Logic and FreshML. For example, ifX is a name
of typeP, the construct for abstracting the nameX would be
X . (−), and it has a corresponding type constructorN

X:P
(−),

which binds the occurrences of the nameX in the supplied
type. The intended operational semantics ofX . e is to pair up
the nameX and thevalueof e into a closure, thus explicitly
hiding the identity ofX (or, which is equivalent, returning the
α-equivalence class ofe with respect toX). The quantifier N
has already been investigated in [6] and [16], but it has not
been used explicitly in the definition of FreshML.

Just as in FreshML, the elimination form for name abstraction
is name concretion. Its syntax ise@Y, wheree is a name
abstraction andY is a name not occurring ine. Its operational
meaning is to swapY with the name abstracted ine.

For example, assuming as before thatX,Y:int are available
names, we can create the term

t4 = X . box (X2−1)

which depends ononename (e.g. a “polynomial” in one in-
determinate), ignoring the exact identity of that name. The
type of t4 is N

Z:int
�(int[Z]), reflecting the fact that the actual

indeterminate is not really known. But, if a need arises to ma-
nipulate the unknown indeterminate, we can always provide a
fresh name for it by concretion, like in the term

t5 = t4@Y

which reduces tobox (Y2−1).

We also need a way to dynamically introduce fresh names into
the computation. Just like in FreshML, this duty is given to the
term constructor

newX:P in e

which creates a new local nameX and proceeds to evaluatee in
the extended environment. Just like in FreshML, the type sys-
tem will make sure that the value ofedoes not contain unsub-
stituted or unabstracted occurrences ofX. Unlike in FreshML,



where types of names belong to a separate universe, our name
can have arbitrary typeP, as long asP is simple (i.e.�-free).
Notice that this constraint on simple types is fairly arbitrary;
we wanted to understand the restricted language first before
we extend it and generalize it.

As�-types can now explicitly store the information about the
support of the terms they classify, another feature we need to
consider is explicit support polymorphism. A program may
want to manipulate code expressions no matter what their sup-
port sets are, or code expressions whose supports are unknown
at compile time. A typical example would be a function which
scans over some boxed term. When it encounters a lambda
expression, it has to place a fresh name instead of the bound
variable, and recursively continue scanning the body of the
lambda, which is itself a boxed expression, but depending on
this newly introduced name. For such uses, we extend the no-
tion of support of a term to not only list the names appearing
in the term, but to also allow variables standing for unknown
support sets. Our language provides a term constructΛp#K. e
of type∀p#K. A which is a polymorphic abstraction of an un-
known support setp disjoint from a set of namesK. Both
the constructs bind the variablep, and two terms/types differ-
ing only by α-variation of the bound variable are considered
equal. WhenK is empty, we abbreviate the constructs into
Λp. e and∀p. A. The terme [[C]] is the polymorphic instantia-
tion, substituting a support setC for the support variable bound
in e.

The syntax of our language is presented in Figure 1. Simi-
larly to λ�, we make a distinction between ordinary (value)
variables and expression variables. We further distinguish be-
tween expression variables and expressions that have empty
support, and those that may depend on some name; the first
kind can be compiled and executed, and the second cannot.
In analogy with Kripke semantics for Modal Logic, we will
call the first kindreflexive, and the second kindnonreflexive.
Thus, a variable contextΓ may contain three forms of vari-
able typings:x:A for value variables,u::A[C] for reflexive and
t::−A[C] for nonreflexive expression variables with supportC.
Notice that in a seeming contradiction to the definition of re-
flexive expression variables, we allow the supportC to occur
in their typing. The reason for it is in the interaction of expres-
sion variables with the term constructorbox for expressions.
Expression variables which are non-reflexive (and hence un-
reachable) outside a boxed term, will be accessible in the in-
side of it. It is in this sense that non-reflexive expressions can-
not be executed, but only substituted into other non-reflexive
expressions. This intuition will be formalized later in the typ-
ing judgment where the rule for box introduction will change
the status of non-reflexive variables into reflexive ones. We
call the typeA with a supportC anannotated type.

The support variable context∆ associates support variables
with disjointness annotations. For example,p#K ∈ ∆ would
mean that the support set variablep stands for an unknown
support setC such that: (1)C contains no names from the set
K, and (2) ifq ∈C is a support variable, thenq#K ∈ ∆, too.
Enlarging an appropriate context by a new variable or a name
is subject to Barendregt’s Variable Convention: the new vari-
ables are assumed distinct, or are renamed in order not to clash
with already existing ones. Terms which differ only in names
of their bound variables are considered equal. The type con-

structor N
X:P

A is also a binder, abstracting a nameX:P from the

type A, but it does not introduce a new name into the name
context. As usual, capture avoiding substitution is defined to
rename variables and names when descending into their scope.
Free support variables of a given typeA are denoted byfp(A),
free variables of a termeby fv(e), and its free names arefn(e).

Example 1To illustrate our language constructs and motivate
the further development, we present a version of the staged
exponentiation function that we could write in our system. In
this example we assume that the language is extended with the
base type of integers. In general, in the examples throughout
the paper, we will assume the additional type and term con-
structs as we need them, either to illustrate the point or just
improve readability. In any of the cases, the addition should
not impose tremendous technical difficulties.

pow’ =
fix pow’:∀p. �(int[p])->int->�(int[p]).

Λp. λe:�(int[p]). λn:int.
if n = 0 then box 1
else

let box e1 = pow’ [[p]] e (n - 1)
box e2 = e

in
box (e1 * e2)

end

pow : int -> �(int -> int) =
λn:int.

new X:int in
let box e = pow’ [[X]] (box X) n
in

box (λx:int. {X = x} e)
end

- sqcode = pow 2;
val sqcode =

box (λx:int. x * (x * 1)):�(int->int)

The functionpow takes an integern and generates an inte-
ger nameX. Then it calls the helper functionpow’ to build
the expressione= X ∗ · · · ∗X︸ ︷︷ ︸

n

∗1 of annotated typeint[X]. Fi-

nally, it substitutes the nameX in e with a newly introduced
bound variablex, before returning. The helper functionpow’
is support-polymorphic; its support variablep is instantiated
with the relevant support set as part of the application.

Notice that the generated residual code forsqcode does not
contain any unnecessary redices, in contrast to theλ� version
of the program from Section 2.

3.1 Auxiliary judgments

In order to state the typechecking rules, we will need a couple
of auxiliary judgments. First is the judgment fordisjointness
(also referred to asfreshness) of support sets. It has the form
∆ `C # K, where∆ is a context storing support variables with
their freshness annotations,C is a support set, andK is a set
of names. The judgment is satisfied if none of the names from
K appears inC, and if all the variables fromC are declared
disjoint fromK in the context∆.



Simple types P ::= 1 | P1→ P2
Types A ::= 1 | A1→ A2 |�(A[C]) | N

X:P
A | ∀p#K. A

Terms e ::= ∗ | x | X | λx:A. e | e1 e2 | box e | let box u = e1 in e2 |
X . e | e@X | newX:P in e | Λp#K. e | e [[C]] | {a .= e1} e2 | fix x:A. e

Variable contexts Γ ::= · | Γ,x:A | Γ, t::−A[C] | Γ,u::A[C]
Name contexts S ::= · | S,X:P
Supportvariable contexts ∆ ::= · | ∆, p#K

Figure 1. Syntax of the core language (K is a finite set of names, andC is a finite set of names and support variables).

The concept of disjointness for support sets is then extended to
disjointness for types, so that we have a judgment∆ ` A # X,
whereA is a type andX is a name. It is satisfied ifX does not
appear free in the dependencies ofA on any code level. We
will often combine the two judgments into a new judgment for
disjointness ofannotated types∆ ` A[C] # X.

Also required is a judgment to decide if a given typeA is
well-formed in the name contextS and parameter context∆,
i.e. whether all thefree namesand support variables ofA are
declared inSor ∆, respectively. We denote it asS;∆ ` A wf.

We next define weakening on types: if a type depends on a
certain set of names, we can always pass it as a type with a
superset of names instead. Notice that we may need to alpha-
rename the bound names when comparing twoN-types.

16: 1

B16: A1 A26: B2

A1→ A26: B1→ B2

A6: B

N
X:P

A6: N
X:P

B

A6: B C⊆ D

�(A[C])6:�(B[D])

A6: B K⊆M

∀p#K. A6: ∀p#M. B

Finally, we implicitly equate two typesA and B if A 6: B
andB6: A. This is justified by the fact that two types will
be in this relation iff they differ only in the ordering of names
and variables in their supports. But support sets are indeed
considered sets, so this ordering should not matter.

3.2 The type system

The typing judgment of our language has the form

S;Γ `∆ e : A[C]

It reads: in the presence of name contextS, variable contextΓ
and support variable context∆, the terme has typeA and the
support ofe is includedin C. As customary, we presuppose
that all involved contexts are well-formed. In particular, all
the variables, names and parameters are distinct, and all their
types are well-formed.

Before proceeding further, we define an operationΓO on vari-
able contexts. It erases the ordinary variables fromΓ and
changes nonreflexive expression hypothesest::−A into reflex-
ive onest::A. As already hinted before, it will be used in the
box introduction rule to make the non-reflexive variables ac-
cessible under the box.

(·)O = ·
(Γ,x:A)O = ΓO

(Γ, t::−A[C])O = ΓO, t::A[C]
(Γ,u::A[C])O = ΓO,u::A[C]

The typing rules of our language are presented in Figure 2. We
explain the most important ones of them next.

Hypothesis rulesNotice first that the hypotheses rules ex-
ist only for the ordinary value variables and for the reflexive
expression variables. The non-reflexive variables cannot be
accessed until they are turned into the reflexive ones by the
rule forbox introduction. Thus, as already commented before,
non-reflexive code expressions cannot be evaluated, but can
only be used to compose new code expressions. The intention
behind this is to prevent evaluation of code which is not closed.
In addition, all the hypothesis rules check if the their support
sets are well-formed, i.e. if all the names and support vari-
ables are declared in the name contextS and the dependency
variable context∆.

λ-calculus fragmentThe rule forλ-abstraction relies on one
of the auxiliary judgments to check whether the typeA of
the bound variable is well-formed, i.e. whether all its names
and support variables have been already declared in the name
contextS and support variable context∆. This ensures that
the contexts used in the judgment are kept well-formed. The
synthesized typeB does not have to be checked for well-
formedness, as the typing rules guarantee it.

Modal fragment Just as inλ�-calculus, our rule forbox
checks the boxed expressione against a variable contextΓO
from which the value variables have been erased. In addition,
ΓO changes the status of all the nonreflexive expression vari-
ables into reflexive ones, so that they can be used ine (ebeing
on a higher code level frombox e). The support set ofbox e
is empty, and thus it can be freely extended in the judgment by
a well-formed support setD. We also have two different rules
for the let box constructor: one classifies its local variable as
reflexive, the other classifies it as non-reflexive, depending on
the support set of the expression bound to the variable.

Names fragmentThe constructnew generates a fresh name,
and then checks, using the auxiliary disjointness judgment, if
the synthesized type and support set do not contain free occur-
rences of this new name. The operation∆#X extends withX
the freshness annotation of every support variable in∆. This
is justified becauseX is a new name, and is necessary in order
to type possible abstractions with nameX in the body ofnew.

In our system, just like in FreshML, the process of name
abstraction and concretion isseparatedfrom name creation
which is carried out bynew. Thus, the typing rules for abstrac-
tion, concretion and explicit substitution require that the name
they use has already been placed into the name context. The
side condition∆ ` fp(A) # X in the typing rules for abstrac-
tion and concretion is a bit harder to explain. It ensures that the



x:A∈ Γ C⊆ dom(S,∆)

S;Γ `∆ x : A[C]

u::A[C] ∈ Γ C⊆ D⊆ dom(S,∆)

S;Γ `∆ u : A[D]

X:P∈ S C⊆ dom(S,∆)

S;Γ `∆ X : P[X,C]

S;∆ ` A wf S;Γ,x:A`∆ e : B[C] x 6∈ dom(Γ)

S;Γ `∆ λx:A. e : A→ B[C]

S;Γ `∆ e1 : A→ B[C] S;Γ `∆ e2 : A[C]

S;Γ `∆ e1 e2 : B[C]

S;∆ ` A wf S;Γ,x:A`∆ e : A[C] x 6∈ dom(Γ)

S;Γ `∆ fix x:A. e : A[C]

S;ΓO `∆ e : A[C] D⊆ dom(S,∆)

S;Γ `∆ box e :�(A[C]) [D]

S;Γ `∆ e1 :�(A[ ]) [C] S;Γ,u::A[ ] `∆ e2 : B[C] u 6∈ dom(Γ)

S;Γ `∆ let box u = e1 in e2 : B[C]

S;Γ `∆ e1 :�(A[D]) [C] S;Γ, t::−A[D] `∆ e2 : B[C] t 6∈ dom(Γ) D 6= /0

S;Γ `∆ let box t = e1 in e2 : B[C]

S,X:P;Γ `∆ e : A[C] ∆ ` fp(A) # X

S,X:P;Γ `∆ X . e : ( N
X:P

A) [C]

S,X:P;Γ `∆ e : ( N
X:P

A) [C] ∆ ` fp(A) # X

S,X:P;Γ `∆ e@X : A[C]

S,X:P;Γ `∆#X e : A[C] ∆#X ` A[C] # X X 6∈ dom(S)

S;Γ `∆ newX:P in e : A[C]

S;Γ `∆,p#K e : A[C] p 6∈ dom(∆)

S;Γ `∆ Λp#K. e : ∀p#K. A[C]

S;Γ `∆ e : ∀p#K. A[C] ∆ ` D # K D⊆ dom(S,∆)

S;Γ `∆ e [[D]] : ([D/p]A) [C]

S,X:P;Γ `∆ e1 : P[C] S,X:P;Γ `∆ e2 : B[X,C]

S,X:P;Γ `∆ {X
.= e1} e2 : B[C]

S;Γ `∆ e : A[C] A6: B

S;Γ `∆ e : B[C]

Figure 2. Typing rules of the core language.

support variables occurring ine could not be substituted with
a set containing the nameX. If that were possible, the new
occurrence ofX would be abstracted on the level of terms,
but there would be no binding in the corresponding type, thus
causing unsound behavior. The reason for that is that the quan-
tifier in N

X:p
A is itself a binder, and two name abstraction types

which differ only in the identities of their bound names, are
considered equal.

Another important observation about the rule for name ab-
straction is that it does not change the supportC of the in-
volved term. In particular, it does not remove the abstracted
name from it. This is justified by the intended interpretation
of name abstraction(X . e): it first evaluatesits bodye before
creating the closure withX. Thus, the set of names that need
to be provided with definitions in order to evaluate(X . e) is
the same set required for the evaluation ofe itself. In other
words, the two expressions have the same support. Similar
considerations motivate the typing rule for concretion as well.

Subtyping As already commented before, the nature of sup-
port sets makes it natural to pass a type with a smaller support
annotation when a type with a bigger support annotation is re-
quired. Thus, we provide a rule that explicitly coerces terms
into types with extended support, as defined by one of the aux-
iliary judgments.

In the rest of this section we present the basic structural prop-
erties of our calculus. As a first step, notice that the usual
properties of exchange, weakening and contraction for vari-
able contextΓ hold in our system, too. In addition, we have
exchange and weakening for name contexts, support variable
contexts and support sets themselves. Strengthening of vari-
able contexts holds as well: if a term which does not mention
a certain variablex∈ Γ is well typed, then it is well typed in
the context obtained by omittingx from Γ.

We define two new operations on contexts,Γ	 andΓM, which,
together with the already definedΓO, will be important for
stating the substitution principles for our language.Γ	 re-
moves the ordinary value variables fromΓ, leaving only ex-
pression variables in it.ΓM changes the reflexive expression
variables with nonempty name dependencies into nonreflexive
ones.

(·)	 = ·
(Γ,x:A)	 = Γ	

(Γ, t::−A[C])	 = Γ	, t::−A[C]

(Γ,u::A[C])	 = Γ	,u::A[C]



(·)M = ·
(Γ,x:A)M = ΓM,x:A

(Γ, t::−A[C])M = ΓM, t::−A[C]
(Γ,u::A[ /0])M = ΓM,u::A[ /0]
(Γ,u::A[C])M = ΓM,u::−A[C] if C 6= /0

The next step is to define a capture-avoiding name substitu-
tion {X/e}e′. It substitutes the nameX by e, but only on the
current code levelin e′; the occurrences ofX on higher code
levels (i.e. under boxes), as well as the names in abstracting
and concreting positions, or in polymorphic abstractions and
instantiations will not be touched. This operation and its cor-
responding substitution principle (Lemma 1.4) will be used
to justify the operational semantics of the term construct for
name substitution{X .= e} e′.

We further adopt the operation(X Y)(−) of name transposi-
tion (or name swapping) from Nominal Logic and FreshML
[17]. The operation interchanges all the occurrences of names
X andY in the argument expression/type/context/support set.
Name transposition is different from name substitution: the
former swaps two names throughout the given term or type,
no matter the code level on which any of the names occur,
while the later only works on the current code level.

Lemma 1 (Substitution Principles)
1. if S;Γ `∆ e1 : A[C] and S;Γ,x:A`∆ e2 : B[C], then S;Γ `∆

[e1/x]e2 : B[C].

2. if S;Γ	1 `∆ e1 : A[D] and S;Γ2,u::A[D] `∆ e2 : B[C], then
S;Γ1,Γ2 `∆ [e1/u]e2 : B[C].

3. if S;ΓO1 `∆ e1 : A[D] and S;Γ2, t::−A[D] `∆ e2 : B[C], then
S;Γ1,Γ2 `∆ [e1/t]e2 : B[C].

4. if S,X:P;Γ1 `∆ e1 : P[C] and S,X:P;ΓM2 `∆ e2 : B[X,C],
then S,X:P;Γ1,ΓM2 `∆ {e1/X}e2 : B[C].

The premises in the formulation of the substitution principles
deserve further elaboration. Principle 1.2 requires that the sub-
stituted terme1 is typable in a contextΓ	1 , i.e. that it does not
contain any free value variables. The intuition behind this is
that e1 substitutes anexpressionvariableu. Expression vari-
ables may occur on multiple code levels, so the substitution
will copy e1 to multiple code levels too. But the ordinary
value variables are anchored by the type system to only the
current code level, and thuse1 must contain none of them.
Similar considerations guide the formulation of Principle 1.3.
The added twist is that the nonreflexive expression variables
from Γ1 can be treated as reflexive ine1 becausee1 will not
occur in executable positions in the residual term.

Most importantly, Principle 1.4 requires that the context in
both the second premise and in the conclusion be of special
form ΓM2 , i.e. that its reflexive variables only have empty sup-
port. Note that the principle describes a way to reduce the
support of a terme2 by substituting away the nameX. But,
the way the operation of name substitution is defined, it may
not necessarily change the expressione2 itself. For example,

consider the case whene2 = u in the contextΓ = u::A[X]. The
substitution{X/e1}u produces a termu itself, but there is no
typingS;Γ `∆ u : A[ ]. That is why we require that the involved
reflexive variables have no support. In retrospect, the need
to distinguish between expression variables with and without
support, which arises from this principle, was the main reason
why we introduced nonreflexive variables into the design of
the type system at all, instead of staying with only the reflex-
ive variables ofλ�.

Another observation of crucial importance is that the local
variables of a boxed expression form a contextΓ, which is
exactly of the form the Principle 1.4 requires, i.e.Γ = ΓM.
This can easily be seen, as all the reflexive variables which
will be put into the context have empty support (see the typ-
ing rules forlet box in Figure 2). This would allow us to use
the meta operation of name substitution{e1/X}e2 to define
the operational semantics of the language construct for name
substitution{X .= e1} e2. The idea is to use this construct
to perform substitutions within box-annotated expression, and
the Principle 1.4 ensures that these substitutions can be car-
ried out without the postponement of evaluation which is the
usual operational semantics associated with boxed expressions
in λ�.

The following lemma describes the behavior of typing with
respect to substitution and name transposition. It is used in the
proof of the Type Preservation and Progress theorem to justify
the operational semantics assigned to the term constructors for
support-polymorphic instantiation and concretion.

Lemma 2 (Parametricity)
1. if S;Γ `∆,p#K e: A[C] and D is a well-formed support set,

i.e. D ⊆ dom(S,∆), and is fresh for K, i.e. ∆ ` D # K,
then

S; [D/p]Γ `∆ [D/p]e : ([D/p]A) [[D/p]C]

2. if S;Γ `∆ e : A[C], and X,Y:P are names (not necessarily
in S), then

(X Y)S;(X Y)Γ `(X Y)∆ (X Y)e : (X Y)A[(X Y)C]

4 Operational semantics

In this section we define the structured operational semantics
for our core language, and formulate the appropriate Progress
and Type Preservation theorem. We start by introducing the
notion of contraction, which will be instrumental in defining
thevaluesof our language. The idea is that we do not consider,
like in λ�, that all boxed expressions are values. Rather, in or-
der to be values, boxed expressions have to be “contracted”,
i.e. not reduced completely, but only freed of (some) name
substitution they may contain. The name substitutions that are
carried out (i.e. contracted) under a box in a given expression
satisfy two properties: (1) they occur on the current code level,
and (2) the substituted name is created outside of the boxed
term, rather than being local to it. This is in accordance with
the above observation about the Substitution Principle 1.4 that
the variable contextΓ of variables encountered when travers-
ing the current code level of a boxed term,and not descending
into further and further boxes, is always of a formΓ = ΓM.



Thus, the said substitution principle is applicable, and the en-
countered name substitutions can actually be carried out with-
out postponing.

The judgment for contraction has the form

e
S−→ w

and means: if the name substitutions in the expressione of
namesother than thosein Sare carried out, we obtainw. The
“protected” setScarries the locally defined names ofe(see the
contraction rule fornew), and is introduced in order to comply
with the requirement (2) from above. The judgment is defined
with the rules

e
S,X:P−−−→ w

newX:P in e
S−→ newX:P in w

e1
S−→ w1 e2

S−→ w2 X ∈ dom(S)

{X .= e1} e2
S−→ {X .= w1} w2

e1
S−→ w1 e2

S−→ w2 X 6∈ dom(S)

{X .= e1} e2
S−→ {w1/X}w2

and is structural (i.e. commutes) with the other language con-

structs. An expressione is S-contractedif e
S−→ e. It is con-

tractedif and only if it is /0-contracted. We use the letterw to
range overS-contracted expressions.

Lemma 3 (Contraction Termination)
If S1,S2;ΓM `∆ e : A[C] then there exists unique term w, such

that e
S2−→w. Furthermore, w is S2-contracted and S1,S2;ΓM `∆

w : A[C].

We can now define our syntactic category of values.

v ::= ∗ | λx. e | X . v | Λp#K. e | box w

It is not difficult to prove that name substitution preservesS-
contracted expressions. In the same way, name transposition
preservesS-contracted expressions as well, and as a conse-
quence, it also preserves values.

We are now in position to define a small-step operational se-
mantics (see Figure 3), and formulate the Type Preservation
and Progress theorem for the core part of the language. Note
that the theorem requires empty variable contexts and support.

Theorem 4 (Progress and Type Preservation)
If S; · ` e : A[ ], then either

1. e is a value, or

2. there exists S′ ⊇ S such that S,e 7−→ S′,e′; furthermore
e′ is unique and S′; · ` e′ : A[ ].

5 Intensional code analysis

This section presents the definition and the theory of pattern-
matching on code expressions. Pattern matching code is used

to inspect the structure of an object program and destruct it into
its component parts. For the purposes of this work, we limit
ourselves to intensional analysis of only the simply typedλ-
calculus fragment of our language. Thus, admittedly, our cur-
rent results are far from complete, but nevertheless, we present
them here as a first step towards a stronger and more robust
system.

Patterns π ::= ∗ | x | X | [E x1 · · ·xn] | λx:P. π |
(π1) (π2:P)

The higher-order pattern[E x1 · · ·xn] declares a pattern vari-
ableE matching a code expression subject to condition that
the expression’s free variables are amongx1, . . . ,xn. We will
denote pattern variables with capitalE and its variants. Pat-
ternλx:P. π matches a lambda expression of domain typeP. It
declares a variablex which is local to the pattern, and demand
that the body of the matched expression conforms to the pat-
ternπ. Bound variables, likex above, are to be distinguished
from pattern variables, like[E x1 · · ·xn]. The later provides
a placeholder for the matching process; upon execution of a
successful matching, it will be bound to a certain expression.
The former is just a syntactic constant, which is introduced by
a pattern for lambda expressions, and can match only itself.
Patterna matches a namea from the global name context.
Pattern(π1)(π2:P) matches an application; in order to avoid
polymorphic types in patterns, we require that the this pattern
proscribes the exact type of the argument in the application.

The judgment for typechecking patterns has the form

S;Γ
∆ π : P[C]=⇒Γ1

and reads: in the context of global namesS, global parameters
∆, and a context of locally declared variablesΓ, the pattern
π has the typeP, support setincluded in Cand produces a
residual contextΓ1 of pattern variables and their typings. This
residual context is to be passed to subsequent computations.
The rules of this judgment are presented in Figure 4. Note that,
because we are limited to only the simply-typed fragment, the
local variables that the typing rules deposit inΓ will always
be ordinary value variables, and always simply typed. On the
other hand, we do allow a bit more generality in the case of
pattern variables[E x1 · · ·xn]; they still can match only terms
of simple types, but these terms can have subterms of more
general typing. However, it will always be the case thatΓ1 =
ΓM1 which is easy to show.

In order to incorporate pattern matching into the core lan-
guage, we enlarge the syntax with a new term constructor.

Terms e ::= . . . | casee0 of box π⇒ e1 elsee2

The intended operational interpretation ofcaseis to evaluate
the argumente0 to obtain a boxed expressionbox w, then
matchw to the patternπ. If the matching is successful, it cre-
ates an environment with bindings for the pattern variables,
and then evaluatese1 in this environment. If the matching
fails, the branche2 is taken. The typing rule forcaseis:

S;Γ `∆ e0 :�(P[D]) [C] S; ·
∆ π : P[D]=⇒Γ1

S;Γ,Γ1 `∆ e1 : B[C] S;Γ `∆ e2 : B[C]

S;Γ `∆ casee0 of box π⇒ e1 elsee2 : B[C]

Observe that the upper-right premise ofcaserequires an empty
variable context, so that patterns cannot contain outside value



S,e1 7−→ S′,e′1

S,(e1 e2) 7−→ S′,(e′1 e2)

S,e2 7−→ S′,e′2

S,(v1 e2) 7−→ S′,(v1 e′2) S,((λx:A. e) v) 7−→ S, [v/x]e

S,e1 7−→ S′,e′1

S,(let box u = e1 in e2) 7−→ S′,(let box u = e′1 in e2) S,(let box u = box w in e2) 7−→ S, [w/u]e2

S,fix x:A. e 7−→ S, [fix x:A. e/x]e

e−→ w enot contracted

S,box e 7−→ S,box w S,(newX:P in e) 7−→ (S,X:P),e

S,e 7−→ S′,e′

S,(X . e) 7−→ S′,(X . e′)

S,e 7−→ S′,e′

S,(e@X) 7−→ S′,(e′@X) S,(Y . v)@X 7−→ S,(X Y)v

S,e 7−→ S′,e′

S,(e [[C]]) 7−→ S′,(e′ [[C]])

S,((Λp#K. e′) [[C]]) 7−→ S, [C/p]e′
S,e1 7−→ S′,e′1

S,({X .= e1} e2) 7−→ S′,({X .= e′1} e2) S,({X .= v} e2) 7−→ S,{v/X}e2

Figure 3. Structured operational semantics of the core language.

xi :Pi ∈ Γ C⊆ dom(S,∆)

S;Γ
∆ [E~x] : P[C]=⇒E: N
X1:P1

. . . N
Xn:Pn

�(P[C,~X])

C⊆ dom(S,∆)

S;Γ,x:P
∆ x : P[C]=⇒·

C⊆ dom(S,∆)

S,X:P;Γ
∆ X : P[X,C]=⇒·

S;Γ,x:P1 
∆ π : P2 [C]=⇒Γ1

S;Γ
∆ λx:P1. π : P1→ P2 [C]=⇒Γ1

S;Γ
∆ π1 : P2→ P[C]=⇒Γ1 S;Γ
∆ π2 : P2 [C]=⇒Γ2

S;Γ
∆ (π1) (π2 : P2) : P[C]=⇒Γ1,Γ2

Figure 4. Selected typing rules for patterns.

or expression variables.

The operational semantics for patterns is given through the
new judgment

S;Γ;w�π=⇒S′,Θ

which reads: in a global context of namesS, global context
of parameters∆, context of local variablesΓ, and the support
C, the matching ofcontractedexpressionw to the patternπ
extends the global store toS′ and generates a substitutionΘ
for the pattern-variables ofπ. We present several interesting
rules below.

fv(w)⊆ {x1, . . . ,xn} X1, . . . ,Xn fresh xi :Pi ∈ Γ

S;∆;Γ;w� [E~x]=⇒(S,Xi :Pi), [E 7→ (~X . box [~X/~x]w)]

S;∆;Γ,x:P;w�π=⇒S′,Θ

S;∆;Γ;λx:P. w�λx:P. π=⇒S′,Θ

S;Γ;w1 �π1=⇒S1,Θ1
S;Γ ` w2 : P2 [S]

S1;Γ;w2 �π2=⇒S2,Θ2
S;Γ;(w1 w2)� (π1) (π2:P2)=⇒S2,(Θ1 ◦Θ2)

As already mentioned, the pattern variable[E x1 · · ·xn] should
match an expressionw provided thatw depends only on vari-
ablesx1, . . . ,xn. Thus, the rule for pattern variables explicitly
provides the required check. The residual substitution binds

the pattern variableE to a term obtained fromw in which the
listed variablesxi are substituted by newly generated namesXi
and then abstracted. The soundness of the operational seman-
tics for patterns hinges on the following definition and lemma.

Definition 5 (Types for Substitutions)
The judgment S`∆ Θ : Γ denotes that Θ is a substitution for
the variables in Γ, and that the substituting terms allow occur-
rences of only the names in S. In other words S`∆ Θ : Γ if for
every pattern-variable E:A∈ Γ we have S; · `∆ Θ(E) : A[ ].

Lemma 6 (Pattern-matching Type Preservation)
If S;ΓM1 
∆ π : P[C]=⇒Γ2 and S;ΓM1 `∆ w : P[C] and
S;∆;ΓM1 ;w�π=⇒S′,Θ, then S′ `∆ Θ : Γ2.

The theory already developed for the core languages readily
extends to intensional code analysis. In particular, it is easy to
establish the new cases arising in the Substitution Principles
(Lemma 1), Parametricity of Typing (Lemma 2), and espe-
cially in the Progress and Preservation theorem (Theorem 4).
The interested reader is referred to the forthcoming report [12]
for the details.

Example 2 We can generalize the exponentiation ex-
ample further: instead of powering only integers, we
can power functions too, i.e. have a functional com-
puting f 7→ λx. ( f x)n. The functional is passed the
code for f , and an integern, and returns the code for
λx. ( f x)n. The idea is to have this residual code be as



fpow1 : �(int->int) -> int -> �(int->int) =
λf:�(int->int). λn:int.

let box p = pow n
box g = f

in
box (λz:int. p (g z))

end

-fpow1 (box λy:int. y + 1) 2;
val it = box (λz:int. (λx.x*(x*1)) ((λy.y+1) z))

: �(int->int)

optimized as possible, while still computing the extensionally
same result. One possible implementation of this functional in
our core language is given above. As a matter of fact, there is
at least one other way to obtain the same: we can eliminate the
outer beta redex from the above residual code, at the price of
duplicating the inner one.

fpow2 =
λf:�(int->int). λn:int.

new X:int in
let box f’ = f

box e = pow’ [[X]] (box (f’ X)) n
in

box (λx:int. {X = x} e)
end

- fpow2 (box (λy:int. y + 1)) 2;
val it =
box (λx:int. ((λy.y+1) x) * ((λy.y+1) x) * 1)
: �(int->int)

Neither of the above implementations is quite satisfactory,
since, evidently, the residual code in both cases contains un-
necessary redices. The reason is that we do not utilize the
intensionalinformation that the passed argument is actually a
boxedlambdaabstraction, rather than a more general expres-
sion of a functional type. Both the shown programs can be en-
coded in other meta-programming languages such asλ© and
MetaML. In λ�, one has to be content with a rather weaker
program that produces even more unnecessary redices. But,
in our language extended with intensional code analysis, we
could do a bit better. We could test the argument at run-time
and output a more optimized code if it is a lambda expression.
This way we obtain the most simplified, if not the most effi-
cient residual code.

fpow : �(int->int) -> int -> �(int->int) =
λf:�(int->int). λn:int.

case f of
box (λx:int. [E x]) =>

new X:int in
let box F = pow’ [[X]] (E @ X) n
in

box (λx:int. {X = x} F)
end

else fpow1 f n

- fpow (box λx:int. x + 1) 2;
val it = box(λx:int.(x+1)*(x+1)*1): �(int->int)

Example 3This example is a (segment) of a function for sym-
bolic differentiation. The function takes a name abstraction as

an argument: the body of the abstraction is a boxed term en-
coding the expression to be differentiated; the abstracted name
represents the variable with respect to which the differentia-
tion takes place. When the boxed expression is a sum of two
subexpressions, the function just recurses over them. When
the boxed expression is a beta-redex (of a limited form), it first
reduces it before recursing. Other names and constants are
matched in the default case, which thus returns the derivative
0.

diff : ∀p. ( NX:real.�real[X, p]) ->
( NX:real.�real[X, p]) =

fix diff.
Λp. λe:( NX:real.�real[X, p]).

new X:real (* the differentiating name *)
in

case (e @ X) of
box X => X.(box 1)
| box ([E1] + [E2]) =>

let box e1 = (diff [[p]] (X.E1)) @ X
box e2 = (diff [[p]] (X.E2)) @ X

in
X.box (e1 + e2)

end
| box ((λx:real. [E1 x]) [E2]:real) =>

new Y:real in
let box e1 = E1 @ Y

box e2 = E2
in

diff [[p]] (X.box ({Y = e2} e1))
end

else X.(box 0)

Notice that the present lack of polymorphic patterns prevents
us from recognizing, let alone reducing all the beta redices that
could possibly occur in the argument; we currently let them
pass through the default case.

6 Conclusions and future work

This paper presents a typed functional language for meta-
programming, employing a novel way to define a modal type
of code. The system combines theλ�-calculus [15] with the
notion of names based on the developments in FreshML and
Nominal Logic [17, 7, 16, 6]. The motivation for combin-
ing the two comes from the long-recognized need for meta-
programming to handle code expressions with free variables
[2, 22, 11]. λ� provides a way to encode closed syntactic
code expressions, and names serve to stand for the eventual
free variables. Taken together, they give us a way to encode
open syntactic code expressions, and also compose, evaluate,
inspect and destruct them.

Another way to view the work presented here is as a higher-
order extension of the FreshML concept of names. Indeed,
in FreshML, types of names are separated from the types of
the rest of the language. In this sense, the syntax trees that
FreshML can manipulate are first-order. But, if one wants syn-
tax trees of typed syntax (i.e. “higher-order” syntax), then it
seems necessary to make a distinction between the meta-level
and the object-level (i.e. syntax level) of the language. In other
words, one needs a modal type constructor like our�. Not sur-
prisingly then, yet another way to view our contribution is as



a generalization of the system presented in [4] for primitive
recursion over higher-order abstract syntax.

We list below some extensions of the language which we hope
to explore in the future.

Higher-order types for namesWith the limitation that names
can only be simply-typed, our language can encode only ob-
ject programs with simply-typed free variables. This makes it
a two-level, rather than a multi-level language likeλ© and
MetaML. It would be interesting to investigate how further
generalization of the typing for names, if possible at all, will
influence the rest of the language, in particular the operations
of name abstraction and concretion.

Type polymorphism and type-polymorphic recursion In a
meta-programming language, the typing of object programs is
made part of the typing of the meta programs. Consequently,
such a language has a lot of types to care for and thus needs
strong notions of type polymorphism. This was already evi-
dent from our example program for symbolic differentiation
in Section 5.

Models Last, but probably most important, we should build
models for our type system and put it on a sound logical foot-
ing. Interaction between names and modal logic has been
of interest to philosophical investigations for quite some time
(see [9] and [5]). We hope to draw on this work for the future
developments.
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