
Online Appendix with an Additional Example for
Subjective Auxiliary State for Coarse-Grained Concurrency

Ruy Ley-Wild Aleksandar Nanevski
IMDEA Software Institute

{ruy.leywild, aleks.nanevski}@imdea.org

1. Buffer Library and Producer/Consumer Client
To illustrate separate verification of a library and its client, we adapt
another classic example due to Owicki and Gries. The library is a
one-place buffer with blocking put and get operations.1 The client
is a pair of producer and consumer each with a private array of
data that they concurrently communicate through the buffer. The
producer iterates over its array, putting the elements into the buffer,
one by one. The consumer populates its private array in order by
getting from the buffer. The goal is to verify that at the end, the
producer and consumer arrays have identical contents.

1.1 Buffer Library
The buffer library BufferLib (Figure 1, left) provides the function-
ality of a one-place buffer with operations put(v) for adding an
element v to the buffer and get() for removing the contents of the
buffer. Both operations block until they succeed: put loops until
the buffer is empty so it can place v, and get loops until there’s an
element to remove.

Library’s Parameters. To achieve separate verification of the li-
brary and client, we verify the library parametrized with respect
to client-specific information for verification. For example, it is the
client who decides on the type of values stored in the buffer, and the
kind of auxiliary information that should be tracked by the shared
resource. The buffer is oblivious to that kind of information; it just
provides the basic functionality of inserting into and removing from
the buffer. As with PCMs, dependent records suffice to describe the
structure of information exchanged between the buffer and client.

The buffer has three parameters: the type A of values to be
held in the buffer (i.e., an instance of parametric polymorphism),
a PCM U for the auxiliary contributions the client may want to
track with the buffer (i.e., an instance of ad hoc polymorphism),
and a client-specific invariant ClientInv (i.e., an abstract predicate,
generalizing [?, ?]). Thus, BufferLib is a function of the above
arguments, and produces a module that defines an invariant for the
shared state and the put and get operations, which are themselves
parametric in the client’s auxiliaries.

Library’s Invariant. The buffer owns two shared pointers full and
cell protected by the lock lk. When the buffer is empty, the heap is
described by full 7→ false ∗ cell 7→ (). When the buffer is full with
value v, the heap is described by full 7→ true ∗ cell 7→ v.

ClientInv extends the library’s invariant with some constraint to
relate the client’s auxiliary contribution (of type U) to the buffer’s
contents. In the interest of abstraction, it’s desirable to hide the
buffer’s private heap from the client’s invariant. Since the buffer
holds at most one element v of type A, the buffer’s contents are
exposed with the algebraic representation of the type option A; it

1 The original version had an N -place buffer, we use N = 1 for simplicity.

has two possible values: None for the empty buffer, and Some v
for the full buffer with v. Thus, ClientInv is a predicate over a U
value for the client’s auxiliary contribution and an option A value
that represents the buffer’s contents.

The combined library/client invariant Inv takes an auxiliary con-
tribution α argument, and produces a separation logic formula (i.e.,
a predicate over heaps). The invariant combines the library’s rep-
resentation invariant (that the shared heap satisfies the footprint for
full and cell described above) and additionally requires the client
invariant to hold of the auxiliary and the corresponding representa-
tion (as an option). Note the separation of concerns: the library’s
invariant is independent of the client’s auxiliary, and the client’s
invariant is independent of the library’s heap.

Library’s Code. Just as the invariant Inv includes client-specific
constraints, the put and get operations must also have parameters
for the client to update its auxiliary contribution and relate its own
pre- and postconditions to the invariant. That is, when the client
calls a function func, it may want to pass an update function Φ to
change its own auxiliary. Moreover, it may have a client-specific
precondition ClientPre and postcondition ClientPost that it wants
to relate to its invariant ClientInv. In CSL, the rule for the function
can be given schematically as follows (in SCST, the specification
can be given directly in the language):

ClientInv α repn ∧ ClientPre α→
ClientInv (Φ(α)) repn′ ∧ ClientPost (Φ(α)) r

{ClientPre α}func(〈Φ〉){ClientPost (Φ(α)) r ∧ r = · · ·}

The library’s function conceptually changes the representation
from repn to repn′ and when it completes, the client’s update
function Φ is used to change the client’s contribution from α
to Φ(α). Thus it is necessary to show that the client’s invariant
holds of the updated buffer (i.e., with a new representation) and
the client’s new auxiliary. Thus, the client has the proof obligation
in the premise: if the invariant holds of the old buffer representa-
tion (ClientInv α repn) and the precondition holds (ClientPre α),
then after the update the invariant holds of the new buffer repre-
sentation (ClientInv (Φ(α)) repn′) and the postcondition holds
(ClientPost (Φ(α)) r, where r is the result).2

Thus, each function has parameters for the client’s update func-
tion Φ, pre- and postconditions, and a proof of the pre/post/invariant
implication. In particular, we first define the interfaces PutSpecs
and GetSpecs to package the above information, and put and get
functions take as an argument a module of the corresponding in-
terface. Here we take advantage of the factthat the dependent type
theory gives a unified language to package code and proofs. In both

2 A similar pattern appears in [?] for threading the client’s auxiliary code
through the library, but in that setting auxiliary state is global, and the
considered language contains no modularity constructs.

1 2012/7/13



module BufferLib(A:type,U:pcm,
ClientInv:U→ option A→ prop) =

Inv : πcrU→ heap→ prop
= λα. (full 7→ false ∗ cell 7→ () ∧ πcrClientInv α None)∨

(∃v:A. full 7→ true ∗ cell 7→ v ∧ πcrClientInv α (Some v))

interface PutSpecs = Πv:πcrA.

Φp : πcrU→c πcrU,
ppre : πcrU→ prop,
ppost : πcrU→ prop,
pproof :
∀(aS aO:πcrU) (r:unit) (h:heap).
πcrClientInv (aS ⊕ aO) None ∧ ppre aS →
πcrClientInv ((Φp aS)⊕ aO) (Some v) ∧ ppost (Φp aS) r


put : Πv:πcrA.Πps:PutSpecs v.

{[��Own, α,−] ps.ppre α ∧ α′ = ps.Φp α} unit
{[��Own, α′,−] ps.ppost α′}

= fix (λput. λv. λps. lock;
b ← read full;
if b then unlock〈λaS.aS〉; put v 〈ps〉
else buf := v; full := true;

unlock〈ps.Φp〉; ret ())

interface GetSpecs =

Φg : πcrU→c πcrU,
gpre : πcrU→ prop,
gpost : πcrA→ πcrU→ prop,
gproof :
∀(aS aO:πcrU) (r:A) (h:heap)
πcrClientInv (aS ⊕ aO) (Some r) ∧ gpre aS →
πcrClientInv ((Φg aS)⊕ aO) None ∧ gpost (Φg aS) r


get : Πgs:GetSpecs.

{[��Own, α,−] gs.gpre α ∧ α′ = gs.Φg α}A
{[��Own, α′,−] gs.gpost α′}

= fix (λget. λgs. lock;
b ← read full;
if b then v ← read buf; full := false; cell := ();

unlock〈gs.Φg〉; ret v

else unlock〈λaS.aS〉; get 〈gs〉)



module ProdCons(A:type, xp:ptr, xc:ptr) =

ClientInv = λα. λrepn. match (α, repn) with
(PC i j ,None) ⇒ i = j
| (PC i j , Some v) ⇒ i = j + 1 ∧ v = sj
| ⇒ false

module Buf = BufferLib(A,UPC,ClientInv)

module ps : nat→ Buf.PutSpecs = λi :nat. λv : πcrA.

Φp = λα. match α with
P i ′ ⇒ P (i ′ + 1)
| PC i ′ j ⇒ PC (i ′ + 1) j
| ⇒ Undef

ppre = λaS. i < size ∧ aS = P i ∧ v = si
ppost = λaS. aS = P (i + 1)
pproof = · · ·


prod : Πi :nat. {[��Own,P i ,−] i ≤ size ∧ Arr.shape xp s} unit

{[��Own,P size,−] Arr.shape xp s}
= fix (λprod. λi . if i < size then v ← Arr.read xp i ;

Buf.put v 〈ps i〉; prod (i + 1)
else ret ())

module gs : nat→ Buf.GetSpecs = λj :nat.

Φg = λα. match α with
C j ′ ⇒ C (j ′ + 1)
| PC i j ′ ⇒ PC i (j ′ + 1)
| ⇒ Undef

gpre = λaS. j < size ∧ aS = C j
gpost = λaS. λr. aS = C (j + 1) ∧ r = sj
gproof = · · ·


cons : Πj :nat. {[��Own,C j ,−] j ≤ size ∧ ∃S .Arr.shape xc S

∧∀k < j .Sk = sk} unit
{[��Own,C size,−] Arr.shape xc s}

= fix (λcons. λj . if j < size then v ← Buf.get 〈gs j 〉;
Arr.write xc j v; cons (j + 1)

else ret ())
doit : {[��Own,PC 0 0,−] Arr.shape xp s ∗ ∃S .Arr.shape xc S}

unit× unit
{[��Own,PC size size,−] Arr.shape xp s ∗ Arr.shape xc s}

= producer 0 ‖ consumer 0


Figure 1. A buffer library (left) and its producer/consumer client (right).

interfaces, the Φ function has typeU→c U, and the pre- and post-
conditions are predicates over an auxiliary U. A module matching
the interface of PutSpecs is a function of the value v being in-
serted (hence the Πv:A argument in the interface definition); the
implication pproof has an initial representation repn= None and
a final representation repn′= Some v corresponding to success-
fully finding the buffer empty and then filling it with v. A module
matching the interface of GetSpecs doesn’t have an argument; the
implication has an initial representation repn= Some r and a final
representation repn′= None corresponding to successfully find-
ing r in the buffer and then emptying it; note that the initial value
r in the buffer is also the result, the quantification over r indicating
that the implication must work for any possible contents found in
the buffer.

The definition of put has two arguments: the value v to put into
the buffer and a module ps matching the PutSpecs interface, the
latter is shaded because it’s auxiliary to the verification but not
needed for execution. The type exposes that the auxiliary contribu-
tion changes from α to α′ = ps.Φp(α), where ps.Φp projects the
Φp component from the psmodule. Observe that the local contribu-
tion is combined with the environment’s contribution when passed
to the client invariant, but the pre and post only depend on the local
contribution. The code is a recursive definition that loops until it
successfully enters the critical section and finds the buffer empty,
so it can place the contents in cell and update the full flag, then exit

the critical section and update the client’s auxiliary (it passes ps.Φp

as an argument to unlock); if the buffer is full, then the code un-
locks with the same local contribution and retries with a recursive
call. Although the proof of the implication (i.e., ps.pproof) doesn’t
appear in the code, it’s used to typecheck the successful unlock.

The definition of get only has one argument: a module gs
matching the GetSpecs interface. The code is a recursive definition
that loops until it successfully finds a value in the buffer to remove.

1.2 Buffer Client
The client (Figure 1, right) consists of a producer and a consumer
that can be verified against the buffer’s specification without relying
on its implementation (i.e., heap invariant and code).

The producer has an array with base pointer xp of some size
which contains the elements of a sequence s (i.e., its heap contains
xp + i 7→ si for each index i). Likewise, the consumer has an
array with base pointer xc of the same size, but its initial contents
are arbitrary. The producer iteratively puts each element from its
private array into the shared buffer. Concurrently, the consumer
iteratively gets from the shared buffer to populate its private array.
The intended postcondition is for the producer and consumer to
have arrays with identical contents.

The heap predicate Arr.shape x s represents the contents of the
array:

Arr.shape x s =̂ (x+ 0 7→ s0) ∗ · · · ∗ (x+ size− 1 7→ ssize−1)

2 2012/7/13



The i th index of an array can be read with Arr.read x i and written
value v with Arr.write x i v.

Client’s PCM. Intuitively, the producer (resp., consumer) needs
an auxiliary number i ′ (resp., j ′) to relate its iteration index i (resp.,
j ) and loop invariant to the client invariant embedded in the buffer.
Thus, the PCM for the producer and consumer’s contributions is
defined by the following inductive type and associated operations:

UPC = N | P i | C j | PC i j | Undef

x⊕ y =


x if y = N
y if x = N
PC i j if (x, y) = (P i ,C j ) or (C j ,P i)
Undef otherwise

0 = N

The UPC type has five distinct possible values that describe the
thread behavior on the shared buffer: (1) P i is a producer that has
advanced to the index i in its private array; (2) C j is a consumer
that has advanced to the index j in its private array; (3) PC i j
is a thread that both produces and consumes; (4) N is a thread
that neither produces nor consumes, though it can enter the critical
section; (5) Undef indicates an inconsistent behavior (e.g., two
threads trying to produce).

Client’s Parameters. The client module has a parameter A for
the array contents’ type and the base array pointers xp and xc. The
verification of the producer and consumer can be done generically
for arrays with any type of content. We assume there is a finite
function s that describes the contents of the producer’s array, which
is used in the functions’ specifications to relate the value inserted
by the producer to the value removed by the consumer.

Client’s Invariant. The client defines its invariant ClientInv as
follows: the collective auxiliary contribution must have exactly
one producer and consumer (hence α = aS ⊕ aO is of the form
PC i j ); if the buffer’s representation is initially None, then the
producer and consumer should have the same index (i = j ); if the
buffer’s representation is initially Some v, then the producer has
put but the consumer has yet to get, so their indices are off by one
(i = j + 1) and the contents of the buffer match the j th element of
the producer’s array (xp + j 7→ sj ). Note that the client invariant
only depends on the auxiliary state and the abstract representation
of the buffer; it does not know the shape of the buffer’s heap.

Thus, the buffer library can be instantiated as Buf by passing
the necessary arguments to BufferLib: the type A of the contents,
the PCMUPC, and the client invariant ClientInv.

Producer. The producer defines a module psmatching the buffer’s
expected interface PutSpecs. It’s a function of the producer’s it-
eration index i so that we can instantiate it at every iteration of
the producer’s loop. It also has an argument value v to match the
argument required by PutSpecs. Since the producer is put’s client,
it must define the necessary Φp function, pre- and postconditions,
and prove the implication. The Φp function increment’s the pro-
ducer’s contribution i by 1; the function has an analogous behavior
on PC i j = P i ⊕ C j to satisfy unlock’s locality requirement
(cf. Section ??); for all the other values it’s Undef. ppre checks
that the index i is within bounds, the local auxiliary contribution
is the behavior of a producer (aS = P i), and that the value being
inserted is the i th element of s. ppost checks that the producer’s
index went up by 1, as to be expected from the Φp function. The
pproof witnesses the implication described above; it is elided for
reasons of space, but we emphasize that both proofs and programs
can be expressed in the language.

Next, the type of prod says that it has an argument i , and if the
initial auxiliary contribution is P i and the index is within the ar-
ray’s bounds, then after the program runs the auxiliary contribution

will be P size and the array will remain in the heap. The code is
a recursive definition that terminates if the index is out of bounds,
otherwise it reads a value v from the private array xp and puts it
into the shared buffer, and finally loops on the next index. The ps
module is instantiated with the index i and passed as auxiliary data
to typecheck the put call.

Consumer. Similarly, the consumer defines a module gs match-
ing the interface GetSpecs and the code cons for populating the
consumer’s private array. The Φg function increments the con-
sumer’s index j by 1. Whereas the producer’s precondition re-
lated the client’s invariant to the value inserted, the consumer’s
postcondition relates the invariant to the value removed. Thus the
consumer’s gpre requires the consumer’s index j to be within
bounds, while gpost ensures that the index has incremented by 1
and result r of get is the j th element of the sequence s.

The type of cons specifies as loop invariant that the consumer’s
private array contains some sequence S which agrees with the
sequence s up to, but not including, index j . The precondition
requires the iteration index j to be at most size, the postcondition
ensures that at the end the consumer’s contribution is size and its
array agrees with s. The code for cons is a recursive loop over
argument j that gets from the shared buffer and writes into the j th
entry in its private array for all entries less than size. The gsmodule
is instantiated with the iteration index j in order to typecheck the
get call (i.e., to verify that the pre/post/invariant implication holds).

Tying it all together. Finally, we can define the top-level program
doit that runs the producer and consumer in parallel with initial
iteration indices i = 0 = j . The precondition shows that the
local auxiliary contribution is that of a producer and consumer at
index 0 (PC 0 0) and there are two arrays: one that represents the
sequence s and another with some unknown sequence S . Since the
local auxiliary and heap can be split to satisfy the producer’s and
consumer’s preconditions, the parallel composition rule allows us
to conclude the postcondition with both producer and consumer at
the end of the array (PC size size) and both arrays representing s.

3 2012/7/13


